metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-bert-binary-random
results: []
NHS-bert-binary-random
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5693
- Accuracy: 0.8050
- Precision: 0.7984
- Recall: 0.8048
- F1: 0.8006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.0554 | 1.0 | 397 | 0.4393 | 0.8120 | 0.8050 | 0.8082 | 0.8064 |
0.087 | 2.0 | 794 | 0.4810 | 0.7729 | 0.7804 | 0.7890 | 0.7721 |
2.1969 | 3.0 | 1191 | 0.5693 | 0.8050 | 0.7984 | 0.8048 | 0.8006 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2