NHS-dmis-binary / README.md
intermezzo672's picture
NHS-dmis-binary-random
d633fbe verified
metadata
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: NHS-dmis-binary
    results: []

NHS-dmis-binary

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4752
  • Accuracy: 0.8158
  • Precision: 0.8102
  • Recall: 0.8064
  • F1: 0.8081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0543 1.0 397 0.3985 0.8240 0.8232 0.8089 0.8141
0.1033 2.0 794 0.4902 0.7817 0.7913 0.7996 0.7811
2.162 3.0 1191 0.4752 0.8158 0.8102 0.8064 0.8081

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2