metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-roberta-binary-random
results: []
NHS-roberta-binary-random
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5076
- Accuracy: 0.7937
- Precision: 0.7920
- Recall: 0.8022
- F1: 0.7915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.0996 | 1.0 | 397 | 0.4221 | 0.8088 | 0.8018 | 0.8041 | 0.8029 |
0.0996 | 2.0 | 794 | 0.4597 | 0.7861 | 0.7913 | 0.8009 | 0.7851 |
1.9859 | 3.0 | 1191 | 0.5076 | 0.7937 | 0.7920 | 0.8022 | 0.7915 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2