Don't use this yet, there's a problem with the llamafied internlm2 tokenizer. Prompt format: ChatML.
See axolotl config
axolotl version: 0.3.0
base_model: /data/internlm2-base-20b-llama
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: /data/train-all-8k.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: /data/internlm-limarp-lora-out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
internlm-limarp-lora
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3563 | 0.01 | 1 | 2.3995 |
2.1815 | 0.25 | 37 | 2.2693 |
2.1364 | 0.51 | 74 | 2.1684 |
2.1355 | 0.76 | 111 | 2.1526 |
2.1624 | 1.03 | 148 | 2.1435 |
2.1326 | 1.28 | 185 | 2.1367 |
1.9987 | 1.54 | 222 | 2.1330 |
2.0494 | 1.79 | 259 | 2.1291 |
2.0505 | 2.04 | 296 | 2.1266 |
2.075 | 2.3 | 333 | 2.1243 |
2.0183 | 2.55 | 370 | 2.1229 |
2.1047 | 2.81 | 407 | 2.1227 |
2.1309 | 3.06 | 444 | 2.1218 |
2.1249 | 3.31 | 481 | 2.1214 |
2.1423 | 3.57 | 518 | 2.1214 |
2.0913 | 3.82 | 555 | 2.1216 |
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 5
Model tree for intervitens/internlm2-limarp-lora
Base model
internlm/internlm2-base-20b
Finetuned
intervitens/internlm2-base-20b-llama