|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- absa |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: louder and the mouse didnt break:I wish the volume could be louder and the |
|
mouse didnt break after only a month. |
|
- text: + + (sales, service,:BEST BUY - 5 STARS + + + (sales, service, respect for |
|
old men who aren't familiar with the technology) DELL COMPUTERS - 3 stars DELL |
|
SUPPORT - owes a me a couple |
|
- text: back and my built-in webcam and built-:I got it back and my built-in webcam |
|
and built-in mic were shorting out anytime I touched the lid, (mind you this was |
|
my means of communication with my fiance who was deployed) but I suffered thru |
|
it and would constandly have to reset the computer to be able to use my cam and |
|
mic anytime they went out. |
|
- text: after i install Mozzilla firfox i love every:the only fact i dont like about |
|
apples is they generally use safari and i dont use safari but after i install |
|
Mozzilla firfox i love every single bit about it. |
|
- text: in webcam and built-in mic were shorting out:I got it back and my built-in |
|
webcam and built-in mic were shorting out anytime I touched the lid, (mind you |
|
this was my means of communication with my fiance who was deployed) but I suffered |
|
thru it and would constandly have to reset the computer to be able to use my cam |
|
and mic anytime they went out. |
|
pipeline_tag: text-classification |
|
inference: false |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: tomaarsen/setfit-absa-semeval-laptops |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7007874015748031 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
This model was trained within the context of a larger system for ABSA, which looks like so: |
|
|
|
1. Use a spaCy model to select possible aspect span candidates. |
|
2. Use a SetFit model to filter these possible aspect span candidates. |
|
3. **Use this SetFit model to classify the filtered aspect span candidates.** |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **spaCy Model:** en_core_web_sm |
|
- **SetFitABSA Aspect Model:** [joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect](https://huggingface.co/joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect) |
|
- **SetFitABSA Polarity Model:** [joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity](https://huggingface.co/joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity) |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [tomaarsen/setfit-absa-semeval-laptops](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-laptops) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| neutral | <ul><li>'skip taking the cord with me because:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'The tech guy then said the:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'all dark, power light steady, hard:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> | |
|
| positive | <ul><li>'of the good battery life.:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'is of high quality, has a:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li><li>'has a killer GUI, is extremely:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li></ul> | |
|
| negative | <ul><li>'then said the service center does not do:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'concern to the "sales" team, which is:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'on, no GUI, screen all:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> | |
|
| conflict | <ul><li>'-No backlit keyboard, but not:-No backlit keyboard, but not an issue for me.'</li><li>"to replace the battery once, but:I did have to replace the battery once, but that was only a couple months ago and it's been working perfect ever since."</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.7008 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import AbsaModel |
|
|
|
# Download from the 🤗 Hub |
|
model = AbsaModel.from_pretrained( |
|
"joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect", |
|
"joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity", |
|
spacy_model="en_core_web_sm", |
|
) |
|
# Run inference |
|
preds = model("This laptop meets every expectation and Windows 7 is great!") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 25.5873 | 48 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| conflict | 2 | |
|
| negative | 45 | |
|
| neutral | 30 | |
|
| positive | 49 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (128, 128) |
|
- num_epochs: (5, 5) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: True |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:----------:|:------:|:-------------:|:---------------:| |
|
| 0.0120 | 1 | 0.2721 | - | |
|
| **0.6024** | **50** | **0.0894** | **0.2059** | |
|
| 1.2048 | 100 | 0.0014 | 0.2309 | |
|
| 1.8072 | 150 | 0.0006 | 0.2359 | |
|
| 2.4096 | 200 | 0.0005 | 0.2373 | |
|
| 3.0120 | 250 | 0.0004 | 0.2364 | |
|
| 3.6145 | 300 | 0.0003 | 0.2371 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.11.7 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.3.0 |
|
- spaCy: 3.7.2 |
|
- Transformers: 4.37.2 |
|
- PyTorch: 2.1.2+cu118 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.15.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |