new model:
iryneko571/mt5-small-translation-ja_zh
better in most aspects, more like a base model with pure data
数值上更好,是用更纯的数据跑的
includes colab notebook
已经配置了colab的notebook,可以直接测试翻译,不需要安装
Release Notes
this model is finetuned from mt5-small
will use about 1.5G vram, fp16 will be less than 1G(if batch size is small), cpu inference speed is ok anyway
used a trimmed piece of pontoon dataset that features ja to zh translate part
also scrambled bunch of the translation from mt5-translation-ja_zh-game-v0.1, which is a large amount of junk for training
reason for making this model
Testing the ideas of using pontoon dataset
Constructing a flexible translation evaluation standard, need a poor performance model to compare
模型公开声明
- 这个模型由 mt5-translation-ja_zh 继续训练得来
- 使用大于1.5g的显存,fp16载入会小于1G显存(batch拉高会大于1G),使用cpu运作速度也还可以
- 制作这个模型的原因
尝试使用现有的模型精调,小模型训练速度奇快 - 本模型缺陷
本身就是用来做测试的,虽然使用的显存很低,但翻译能力奇差
简单的后端应用
还没稳定调试,慎用
A more precise example using it
使用指南
from transformers import pipeline
model_name="iryneko571/mt5-translation-ja_zh-game-small"
#pipe = pipeline("translation",model=model_name,tokenizer=model_name,repetition_penalty=1.4,batch_size=1,max_length=256)
pipe = pipeline("translation",
model=model_name,
repetition_penalty=1.4,
batch_size=1,
max_length=256
)
def translate_batch(batch, language='<-ja2zh->'): # batch is an array of string
i=0 # quickly format the list
while i<len(batch):
batch[i]=f'{language} {batch[i]}'
i+=1
translated=pipe(batch)
result=[]
i=0
while i<len(translated):
result.append(translated[i]['translation_text'])
i+=1
return result
inputs=[]
print(translate_batch(inputs))
Roadmap
- Scamble more translation results from gpt4o, gpt3.5, claude, mt5 and other sources to make a more messy input
- increase translation accuracy
- apply lora on it and apply int8 inference to further decrease hardware requirements
- create onnx and ncnn model
how to find me
找到作者
Discord Server:
https://discord.gg/JmjPmJjA
If you need any help, a test server or just want to chat
如果需要帮助,需要试试最新的版本,或者只是为了看下我是啥,可以进channel看看(这边允许发布这个吗?)
- Downloads last month
- 8