|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- anthracite-org/kalo-opus-instruct-22k-no-refusal |
|
- Nopm/Opus_WritingStruct |
|
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned |
|
- Gryphe/Sonnet3.5-Charcard-Roleplay |
|
- Gryphe/ChatGPT-4o-Writing-Prompts |
|
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned |
|
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned |
|
- nothingiisreal/Reddit-Dirty-And-WritingPrompts |
|
- allura-org/Celeste-1.x-data-mixture |
|
- cognitivecomputations/dolphin-2.9.3 |
|
base_model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 |
|
tags: |
|
- generated_from_trainer |
|
- llama-cpp |
|
- gguf-my-repo |
|
model-index: |
|
- name: EVA-Qwen2.5-32B-SFFT-v0.1 |
|
results: [] |
|
--- |
|
|
|
# itlwas/EVA-Qwen2.5-32B-v0.2-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo itlwas/EVA-Qwen2.5-32B-v0.2-Q4_K_M-GGUF --hf-file eva-qwen2.5-32b-v0.2-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo itlwas/EVA-Qwen2.5-32B-v0.2-Q4_K_M-GGUF --hf-file eva-qwen2.5-32b-v0.2-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo itlwas/EVA-Qwen2.5-32B-v0.2-Q4_K_M-GGUF --hf-file eva-qwen2.5-32b-v0.2-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo itlwas/EVA-Qwen2.5-32B-v0.2-Q4_K_M-GGUF --hf-file eva-qwen2.5-32b-v0.2-q4_k_m.gguf -c 2048 |
|
``` |
|
|