itlwas
Upload README.md with huggingface_hub
5e321d2 verified
|
raw
history blame
2.67 kB
---
language:
- en
license: other
tags:
- axolotl
- generated_from_trainer
- phi
- phi2
- einstein
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- science
- physics
- chemistry
- biology
- math
- llama-cpp
- gguf-my-repo
base_model: Weyaxi/Einstein-v4-Qwen-1.5-32B
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- TIGER-Lab/ScienceEval
- jondurbin/airoboros-3.2
- LDJnr/Capybara
- Cot-Alpaca-GPT4-From-OpenHermes-2.5
- STEM-AI-mtl/Electrical-engineering
- knowrohit07/saraswati-stem
- sablo/oasst2_curated
- glaiveai/glaive-code-assistant
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- bigbio/med_qa
- meta-math/MetaMathQA-40K
- openbookqa
- piqa
- metaeval/reclor
- derek-thomas/ScienceQA
- scibench
- sciq
- Open-Orca/SlimOrca
- migtissera/Synthia-v1.3
- TIGER-Lab/ScienceEval
---
# AIronMind/Einstein-v4-Qwen-1.5-32B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Weyaxi/Einstein-v4-Qwen-1.5-32B`](https://huggingface.co/Weyaxi/Einstein-v4-Qwen-1.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Weyaxi/Einstein-v4-Qwen-1.5-32B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AIronMind/Einstein-v4-Qwen-1.5-32B-Q4_K_M-GGUF --hf-file einstein-v4-qwen-1.5-32b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AIronMind/Einstein-v4-Qwen-1.5-32B-Q4_K_M-GGUF --hf-file einstein-v4-qwen-1.5-32b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/Einstein-v4-Qwen-1.5-32B-Q4_K_M-GGUF --hf-file einstein-v4-qwen-1.5-32b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AIronMind/Einstein-v4-Qwen-1.5-32B-Q4_K_M-GGUF --hf-file einstein-v4-qwen-1.5-32b-q4_k_m.gguf -c 2048
```