|
--- |
|
pipeline_tag: text-generation |
|
inference: false |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- language |
|
- granite-3.0 |
|
- llama-cpp |
|
- gguf-my-repo |
|
new_version: ibm-granite/granite-3.1-1b-a400m-base |
|
base_model: ibm-granite/granite-3.0-1b-a400m-base |
|
model-index: |
|
- name: granite-3.0-1b-a400m-base |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MMLU |
|
type: human-exams |
|
metrics: |
|
- type: pass@1 |
|
value: 25.69 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 11.38 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 19.96 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WinoGrande |
|
type: commonsense |
|
metrics: |
|
- type: pass@1 |
|
value: 62.43 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 39 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 35.76 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 75.35 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 64.92 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 39.49 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: BoolQ |
|
type: reading-comprehension |
|
metrics: |
|
- type: pass@1 |
|
value: 65.44 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 17.78 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: ARC-C |
|
type: reasoning |
|
metrics: |
|
- type: pass@1 |
|
value: 38.14 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 24.41 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 29.84 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 33.99 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: HumanEval |
|
type: code |
|
metrics: |
|
- type: pass@1 |
|
value: 21.95 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 23.2 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: GSM8K |
|
type: math |
|
metrics: |
|
- type: pass@1 |
|
value: 19.26 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 8.96 |
|
name: pass@1 |
|
--- |
|
|
|
# AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`ibm-granite/granite-3.0-1b-a400m-base`](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048 |
|
``` |
|
|