itlwas
Upload README.md with huggingface_hub
462ebbf verified
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- llama-cpp
- gguf-my-repo
new_version: ibm-granite/granite-3.1-1b-a400m-base
base_model: ibm-granite/granite-3.0-1b-a400m-base
model-index:
- name: granite-3.0-1b-a400m-base
results:
- task:
type: text-generation
dataset:
name: MMLU
type: human-exams
metrics:
- type: pass@1
value: 25.69
name: pass@1
- type: pass@1
value: 11.38
name: pass@1
- type: pass@1
value: 19.96
name: pass@1
- task:
type: text-generation
dataset:
name: WinoGrande
type: commonsense
metrics:
- type: pass@1
value: 62.43
name: pass@1
- type: pass@1
value: 39
name: pass@1
- type: pass@1
value: 35.76
name: pass@1
- type: pass@1
value: 75.35
name: pass@1
- type: pass@1
value: 64.92
name: pass@1
- type: pass@1
value: 39.49
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 65.44
name: pass@1
- type: pass@1
value: 17.78
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 38.14
name: pass@1
- type: pass@1
value: 24.41
name: pass@1
- type: pass@1
value: 29.84
name: pass@1
- type: pass@1
value: 33.99
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEval
type: code
metrics:
- type: pass@1
value: 21.95
name: pass@1
- type: pass@1
value: 23.2
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 19.26
name: pass@1
- type: pass@1
value: 8.96
name: pass@1
---
# AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF
This model was converted to GGUF format from [`ibm-granite/granite-3.0-1b-a400m-base`](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048
```