|
--- |
|
pipeline_tag: text-generation |
|
inference: false |
|
license: apache-2.0 |
|
datasets: |
|
- codeparrot/github-code-clean |
|
- bigcode/starcoderdata |
|
- open-web-math/open-web-math |
|
- math-ai/StackMathQA |
|
metrics: |
|
- code_eval |
|
library_name: transformers |
|
tags: |
|
- code |
|
- granite |
|
- llama-cpp |
|
- gguf-my-repo |
|
base_model: ibm-granite/granite-3b-code-base-2k |
|
model-index: |
|
- name: granite-3b-code-base-2k |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MBPP |
|
type: mbpp |
|
metrics: |
|
- type: pass@1 |
|
value: 36.0 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MBPP+ |
|
type: evalplus/mbppplus |
|
metrics: |
|
- type: pass@1 |
|
value: 45.1 |
|
name: pass@1 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: HumanEvalSynthesis(Python) |
|
type: bigcode/humanevalpack |
|
metrics: |
|
- type: pass@1 |
|
value: 36.6 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 37.2 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 40.9 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 26.2 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 35.4 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 22.0 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 25.0 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 18.9 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 29.9 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 17.1 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 26.8 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 14.0 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 18.3 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 23.2 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 29.9 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 24.4 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 16.5 |
|
name: pass@1 |
|
- type: pass@1 |
|
value: 3.7 |
|
name: pass@1 |
|
--- |
|
|
|
# AIronMind/granite-3b-code-base-2k-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`ibm-granite/granite-3b-code-base-2k`](https://huggingface.co/ibm-granite/granite-3b-code-base-2k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3b-code-base-2k) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo AIronMind/granite-3b-code-base-2k-Q4_K_M-GGUF --hf-file granite-3b-code-base-2k-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo AIronMind/granite-3b-code-base-2k-Q4_K_M-GGUF --hf-file granite-3b-code-base-2k-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo AIronMind/granite-3b-code-base-2k-Q4_K_M-GGUF --hf-file granite-3b-code-base-2k-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo AIronMind/granite-3b-code-base-2k-Q4_K_M-GGUF --hf-file granite-3b-code-base-2k-q4_k_m.gguf -c 2048 |
|
``` |
|
|