finetuned-fake-food / README.md
itsLeen's picture
🍻 cheers
d56c4dc verified
|
raw
history blame
4.03 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: finetuned-fake-food
    results: []

finetuned-fake-food

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the indian_food_images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6574
  • Accuracy: 0.6164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6977 0.2421 100 0.6805 0.5822
0.6956 0.4843 200 0.6936 0.4178
0.6795 0.7264 300 0.6734 0.6507
0.7061 0.9685 400 0.6760 0.5822
0.6941 1.2107 500 0.6746 0.5822
0.6898 1.4528 600 0.6675 0.6027
0.6956 1.6949 700 0.6846 0.5753
0.6847 1.9370 800 0.6746 0.5822
0.6949 2.1792 900 0.6780 0.5890
0.703 2.4213 1000 0.6895 0.5753
0.6851 2.6634 1100 0.6742 0.5822
0.6878 2.9056 1200 0.6742 0.6301
0.68 3.1477 1300 0.6713 0.5822
0.6728 3.3898 1400 0.6838 0.5959
0.698 3.6320 1500 0.6775 0.5822
0.7033 3.8741 1600 0.6735 0.5822
0.6973 4.1162 1700 0.6804 0.6233
0.6822 4.3584 1800 0.6848 0.6027
0.6896 4.6005 1900 0.6835 0.5411
0.6772 4.8426 2000 0.6753 0.6096
0.6843 5.0847 2100 0.6667 0.5890
0.6898 5.3269 2200 0.6726 0.5822
0.6868 5.5690 2300 0.6784 0.5616
0.6636 5.8111 2400 0.6640 0.6301
0.6833 6.0533 2500 0.6768 0.5137
0.678 6.2954 2600 0.6652 0.6233
0.6672 6.5375 2700 0.6735 0.5479
0.6975 6.7797 2800 0.6687 0.5890
0.6858 7.0218 2900 0.6672 0.6027
0.6687 7.2639 3000 0.6648 0.5753
0.6636 7.5061 3100 0.6674 0.5685
0.6904 7.7482 3200 0.6752 0.5342
0.6585 7.9903 3300 0.7023 0.5959
0.6874 8.2324 3400 0.6615 0.5753
0.6444 8.4746 3500 0.7721 0.5205
0.6803 8.7167 3600 0.6809 0.5822
0.6782 8.9588 3700 0.6638 0.5822
0.6536 9.2010 3800 0.6607 0.6233
0.6188 9.4431 3900 0.7090 0.5685
0.7026 9.6852 4000 0.6574 0.6164
0.7008 9.9274 4100 0.6577 0.6096

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1