metadata
base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
datasets:
- yahma/alpaca-cleaned
π· Llama-3.2-3B-Instruct-Alpaca
This is a finetune of meta-llama/Llama-3.2-3B-Instruct.
It was trained on the yahma/alpaca-cleaned dataset using Unsloth.
This was my first fine tune and it's not done the best, but it is usable for small applications.
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "itsnebulalol/Llama-3.2-3B-Instruct-Alpaca"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.