metadata
language:
- ro
license: apache-2.0
base_model: openai/whisper-base
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- iulik-pisik/audio_vreme
metrics:
- wer
model-index:
- name: Whisper Base Romanian - Vreme
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Vreme ProTv
type: iulik-pisik/audio_vreme
config: default
split: None
args: 'config: ro, split: test'
metrics:
- name: Wer
type: wer
value: 11.570078092889437
Whisper Base Romanian - Vreme
This model is a fine-tuned version of openai/whisper-base on the Vreme ProTv dataset. It achieves the following results on the evaluation set:
- Loss: 0.2275
- Wer: 11.5701
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0284 | 6.02 | 1000 | 0.1553 | 12.2483 |
0.0013 | 12.05 | 2000 | 0.2104 | 11.8783 |
0.0006 | 18.07 | 3000 | 0.2232 | 11.5290 |
0.0004 | 24.1 | 4000 | 0.2275 | 11.5701 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2