rag-topic-model / README.md
ivanleomk's picture
Add BERTopic model
a9d57c2 verified
|
raw
history blame
1.7 kB
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("ivanleomk/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 243
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 the - verification - my - for - code 24 -1_the_verification_my_for
0 klarna - to - my - and - the 19 0_klarna_to_my_and
1 my - the - return - store - still 98 1_my_the_return_store
2 card - onetime - my - it - for 69 2_card_onetime_my_it
3 payment - my - due - date - the 33 3_payment_my_due_date

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.9.6