language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
pipeline_tag: automatic-speech-recognition
license: apache-2.0
datasets:
- ivrit-ai/whisper-training
Note
This model is NOT the latest model released by ivrit.ai.
Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. More details about it are available here.
whisper-large-v2-tuned is a version of whisper-large-v2, fine-tuned by ivrit.ai to improve Hebrew ASR using crowd-sourced labeling.
Model details
This model comes as a single checkpoint, whisper-large-v2-tuned. It is a 1550M parameters multi-lingual ASR solution.
Usage
To transcribe audio samples, the model has to be used alongside a WhisperProcessor
.
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
SAMPLING_RATE = 16000
has_cuda = torch.cuda.is_available()
model_path = 'ivrit-ai/whisper-large-v2-tuned'
model = WhisperForConditionalGeneration.from_pretrained(model_path)
if has_cuda:
model.to('cuda:0')
processor = WhisperProcessor.from_pretrained(model_path)
# audio_resample based on entry being part of an existing dataset.
# Alternatively, this can be loaded from an audio file.
audio_resample = librosa.resample(entry['audio']['array'], orig_sr=entry['audio']['sampling_rate'], target_sr=SAMPLING_RATE)
input_features = processor(audio_resample, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features
if has_cuda:
input_features = input_features.to('cuda:0')
predicted_ids = model.generate(input_features, language='he', num_beams=5)
transcript = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(f'Transcript: {transcription[0]}')
Evaluation
You can use the evaluate_model.py reference on GitHub to evalute the model's quality.
Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
pipeline
method. Chunking is enabled by setting chunk_length_s=30
when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing return_timestamps=True
:
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="ivrit-ai/whisper-large-v2-tuned",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
Refer to the blog post ASR Chunking for more details on the chunking algorithm.
BibTeX entry and citation info
ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development
@misc{marmor2023ivritai,
title={ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development},
author={Yanir Marmor and Kinneret Misgav and Yair Lifshitz},
year={2023},
eprint={2307.08720},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
Whisper: Robust Speech Recognition via Large-Scale Weak Supervision
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}