results / README.md
izaitova's picture
End of training
0181691 verified
metadata
license: apache-2.0
base_model: google/mt5-large
tags:
  - generated_from_trainer
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of google/mt5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5622
  • Loc: {'precision': 0.9222857142857143, 'recall': 0.9449648711943794, 'f1': 0.9334875650665124, 'number': 854}
  • Org: {'precision': 0.8973561430793157, 'recall': 0.8876923076923077, 'f1': 0.8924980665119876, 'number': 650}
  • Per: {'precision': 0.9014373716632443, 'recall': 0.9440860215053763, 'f1': 0.9222689075630252, 'number': 465}
  • Overall Precision: 0.9092
  • Overall Recall: 0.9259
  • Overall F1: 0.9175
  • Overall Accuracy: 0.9582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Loc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1729 10.0 5000 0.4248 {'precision': 0.9111361079865017, 'recall': 0.9484777517564403, 'f1': 0.9294320137693631, 'number': 854} {'precision': 0.9027113237639554, 'recall': 0.8707692307692307, 'f1': 0.8864526233359435, 'number': 650} {'precision': 0.9010309278350516, 'recall': 0.9397849462365592, 'f1': 0.92, 'number': 465} 0.9060 0.9208 0.9134 0.9584
0.0068 20.0 10000 0.5622 {'precision': 0.9222857142857143, 'recall': 0.9449648711943794, 'f1': 0.9334875650665124, 'number': 854} {'precision': 0.8973561430793157, 'recall': 0.8876923076923077, 'f1': 0.8924980665119876, 'number': 650} {'precision': 0.9014373716632443, 'recall': 0.9440860215053763, 'f1': 0.9222689075630252, 'number': 465} 0.9092 0.9259 0.9175 0.9582

Framework versions

  • Transformers 4.39.3
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.20.0
  • Tokenizers 0.15.2