Diffusers 𧨠port of ReCo: Region-Controlled Text-to-Image Generation (CVPR 2023)
- Original authors: Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng Liu, Ce Liu, Michael Zeng, Lijuan Wang
- Original github repo by authors: https://github.com/microsoft/ReCo
- Converted to Diffusers: Jaemin Cho
LAION checkpoint
- original pytorch lightning checkpoint: https://unitab.blob.core.windows.net/data/reco/reco_laion_1232.ckpt
- original configuration yaml: https://github.com/microsoft/ReCo/blob/main/configs/reco/v1-finetune_laion.yaml
Example Usage
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"j-min/reco_sd14_laion",
torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
prompt = "A box contains six donuts with varying types of glazes and toppings. <|endoftext|> <bin514> <bin575> <bin741> <bin765> <|startoftext|> chocolate donut. <|endoftext|> <bin237> <bin517> <bin520> <bin784> <|startoftext|> dark vanilla donut. <|endoftext|> <bin763> <bin575> <bin988> <bin745> <|startoftext|> donut with sprinkles. <|endoftext|> <bin234> <bin281> <bin524> <bin527> <|startoftext|> donut with powdered sugar. <|endoftext|> <bin515> <bin259> <bin767> <bin514> <|startoftext|> pink donut. <|endoftext|> <bin753> <bin289> <bin958> <bin506> <|startoftext|> brown donut. <|endoftext|>"
generated_image = pipe(
prompt,
guidance_scale=4).images[0]
generated_image
method to create ReCo prompts
def create_reco_prompt(
caption: str = '',
phrases=[],
boxes=[],
normalize_boxes=True,
image_resolution=512,
num_bins=1000,
):
"""
method to create ReCo prompt
caption: global caption
phrases: list of regional captions
boxes: list of regional coordinates (unnormalized xyxy)
"""
SOS_token = '<|startoftext|>'
EOS_token = '<|endoftext|>'
box_captions_with_coords = []
box_captions_with_coords += [caption]
box_captions_with_coords += [EOS_token]
for phrase, box in zip(phrases, boxes):
if normalize_boxes:
box = [float(x) / image_resolution for x in box]
# quantize into bins
quant_x0 = int(round((box[0] * (num_bins - 1))))
quant_y0 = int(round((box[1] * (num_bins - 1))))
quant_x1 = int(round((box[2] * (num_bins - 1))))
quant_y1 = int(round((box[3] * (num_bins - 1))))
# ReCo format
# Add SOS/EOS before/after regional captions
box_captions_with_coords += [
f"<bin{str(quant_x0).zfill(3)}>",
f"<bin{str(quant_y0).zfill(3)}>",
f"<bin{str(quant_x1).zfill(3)}>",
f"<bin{str(quant_y1).zfill(3)}>",
SOS_token,
phrase,
EOS_token
]
text = " ".join(box_captions_with_coords)
return text
caption = "a photo of bus and boat; boat is left to bus."
phrases = ["a photo of a bus.", "a photo of a boat."]
boxes = [[0.702, 0.404, 0.927, 0.601], [0.154, 0.383, 0.311, 0.487]]
prompt = create_reco_prompt(caption, phrases, boxes, normalize_boxes=False)
prompt
>>> 'a photo of bus and boat; boat is left to bus. <|endoftext|> <bin701> <bin404> <bin926> <bin600> <|startoftext|> a photo of a bus. <|endoftext|> <bin154> <bin383> <bin311> <bin487> <|startoftext|> a photo of a boat. <|endoftext|>'
caption = "A box contains six donuts with varying types of glazes and toppings."
phrases = ["chocolate donut.", "dark vanilla donut.", "donut with sprinkles.", "donut with powdered sugar.", "pink donut.", "brown donut."]
boxes = [[263.68, 294.912, 380.544, 392.832], [121.344, 265.216, 267.392, 401.92], [391.168, 294.912, 506.368, 381.952], [120.064, 143.872, 268.8, 270.336], [264.192, 132.928, 393.216, 263.68], [386.048, 148.48, 490.688, 259.584]]
prompt = create_reco_prompt(caption, phrases, boxes)
prompt
>>> 'A box contains six donuts with varying types of glazes and toppings. <|endoftext|> <bin514> <bin575> <bin743> <bin766> <|startoftext|> chocolate donut. <|endoftext|> <bin237> <bin517> <bin522> <bin784> <|startoftext|> dark vanilla donut. <|endoftext|> <bin763> <bin575> <bin988> <bin745> <|startoftext|> donut with sprinkles. <|endoftext|> <bin234> <bin281> <bin524> <bin527> <|startoftext|> donut with powdered sugar. <|endoftext|> <bin515> <bin259> <bin767> <bin514> <|startoftext|> pink donut. <|endoftext|> <bin753> <bin290> <bin957> <bin506> <|startoftext|> brown donut. <|endoftext|>'
- Downloads last month
- 1,187
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.