BabyHydra-dare
𧩠Configuration
models:
- model: OpenPipe/mistral-ft-optimized-1218
# No parameters necessary for base model
- model: WizardLMTeam/WizardMath-7B-V1.1
parameters:
density: 0.53
weight: 0.4
- model: abacusai/Slerp-CM-mist-dpo
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
int8_mask: true
normalize: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jS84/BabyHydra-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Thanks to MergeKit and Lazymergekit for the inspiration!
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jS84/BabyHydra-dare
Merge model
this model