jackoyoungblood
commited on
Commit
·
404f1bc
1
Parent(s):
c4f40c4
15k timesteps
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +19 -19
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 490.34 +/- 55.67
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcfdb8c6991415c21a45aa8b6294e0f1b4c6b70dab053df49dcddad789d585c3
|
3 |
+
size 129258
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
@@ -58,12 +58,12 @@
|
|
58 |
"_np_random": null
|
59 |
},
|
60 |
"n_envs": 4,
|
61 |
-
"num_timesteps":
|
62 |
-
"_total_timesteps":
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
"learning_rate": 0.00095,
|
68 |
"tensorboard_log": "./tensorboard",
|
69 |
"lr_schedule": {
|
@@ -72,7 +72,7 @@
|
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
-
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -80,7 +80,7 @@
|
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
-
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
@@ -88,13 +88,13 @@
|
|
88 |
"_current_progress_remaining": 0.0,
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
-
":serialized:": "
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
95 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
},
|
97 |
-
"_n_updates":
|
98 |
"n_steps": 8,
|
99 |
"gamma": 0.992,
|
100 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fef6f41e680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef6f41e710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef6f41e7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef6f41e830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fef6f41e8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fef6f41e950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef6f41e9e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fef6f41ea70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef6f41eb00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef6f41eb90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef6f41ec20>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fef6f4733c0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
|
|
58 |
"_np_random": null
|
59 |
},
|
60 |
"n_envs": 4,
|
61 |
+
"num_timesteps": 15000000,
|
62 |
+
"_total_timesteps": 15000000,
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
+
"start_time": 1662981387.6141422,
|
67 |
"learning_rate": 0.00095,
|
68 |
"tensorboard_log": "./tensorboard",
|
69 |
"lr_schedule": {
|
|
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAR8BXvijBij7+qUI/E0kgv60QAT9WaYQ9NDlzvlVKiT97zI4/nprQO+mHy79aWQW9Dsp1P/so5rtDwvC+tjEWPYpTmb+o7BY6FKT4vpqouTywx4a/WZc9O0XS7j3oE/W8/xguP9ISuT64+RA/Zfp9P3jpEz5mFGq9FFwlP/73Jb9hJww/Xp+QPaXpxr41hmQ/dswXP9YDS7yq0MC/OYG/vJ6zdD+2VBe8kq3cvvq7yzwOt5i//ztFO+mROL8u1PY8zFZCvnp0Ab0lXJU/m0cJvf8YLj/SErk+uPkQP2X6fT+aks4+f0lNPnwYPj9EOju/DA0RP+73zz1aHXS+OQGBP/bsgj8w9iC98Zqfv2Dw5rsAGnU/YHsCvZUNOr96Icq8O+iYv/tvbDycN3K/DzCRvj0yhr83M4U8hTiVP26YgL3/GC4/0hK5Prj5ED9l+n0/yneJPiZBwz4nAkg/yAKgv5inKD/V9AW9lO7Gvliviz86GFg/qVuuvpRry7/wFkM9ecJ1PyJ4AL4loR698OIpwNyImb9P/3M9I0eNvwRE0T4nW1m+/wYIvqImjj+32xS+/xguP9ANMcC4+RA/Zfp9P5R0lGIu"
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAALHnwTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyn1m9AAAAAMYX+L8AAAAA4b/APQAAAAADouY/AAAAANvP5bsAAAAAafEAQAAAAADlpuC9AAAAAJTn8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdok20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxe6evQAAAAAXCeK/AAAAADV4Tj0AAAAAeXH6PwAAAAB6tEC8AAAAANgC/z8AAAAAGZH5PQAAAAB3teO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqyNCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOzWBb4AAAAAFcv8vwAAAADqLDO9AAAAAK916j8AAAAAHz/vPAAAAACXfug/AAAAAJZhu7oAAAAAAInlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJIBwDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj4dm9AAAAAEKdAMAAAAAA0MI0PQAAAAAGUfs/AAAAAIDL37wAAAAAKfjkPwAAAACe5/y9AAAAAO4OAMAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
|
|
88 |
"_current_progress_remaining": 0.0,
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHuQrpV0cOuMAWyUTegDjAF0lEdA2Wzn+4smOXV9lChoBkdAgHkAOBlMAWgHTegDaAhHQNls62+0w8J1fZQoaAZHQHqrLmp2ll9oB03oA2gIR0DZbWq9ugpSdX2UKGgGR0B+ijPVurIYaAdN6ANoCEdA2W6lBZIQOHV9lChoBkdAeXpmFJxvN2gHTegDaAhHQNluriO3lS11fZQoaAZHQH9JgOOKfnRoB03oA2gIR0DZbrGBFuvVdX2UKGgGR0B6LEth/iHZaAdN6ANoCEdA2W8sv0AcUHV9lChoBkdAgXuuCwr1/WgHTegDaAhHQNlwZTlcQiB1fZQoaAZHQHmIZ3kgfU5oB03oA2gIR0DZcG3fm9xqdX2UKGgGR0B5k98LKFIvaAdN6ANoCEdA2XBxH6/IsHV9lChoBkdAgIx8w5/9YWgHTegDaAhHQNlw6KV2Rq51fZQoaAZHQIBL8qOLiuNoB03oA2gIR0DZchrBhx5tdX2UKGgGR0B/k2Tt9hJAaAdN6ANoCEdA2XIk2CuloHV9lChoBkdAfbyUB4lhPWgHTegDaAhHQNlyKEwWWQh1fZQoaAZHQH6CNRJmNBFoB03oA2gIR0DZcqLZ26kJdX2UKGgGR0B8wzK+zt1IaAdN6ANoCEdA2XPNWBjFynV9lChoBkdAfmj6Mzdk8WgHTegDaAhHQNlz1fKlpGp1fZQoaAZHQIDSMF0PpY9oB03oA2gIR0DZc9kGNaQndX2UKGgGR0B/FyenQ6ZIaAdN6ANoCEdA2XRL3oLXtnV9lChoBkdAgJxEkB0ZFWgHTegDaAhHQNl1eUWZZ0V1fZQoaAZHQHDVbrPdEb5oB03oA2gIR0DZdYIR3/xUdX2UKGgGR0B//DRRdhRZaAdN6ANoCEdA2XWFDVYp2HV9lChoBkdAfW6qrR0EHWgHTegDaAhHQNl1/fHtF8Z1fZQoaAZHQH39Z2t+1BtoB03oA2gIR0DZdzPGS6lMdX2UKGgGR0CCIK9HMEA6aAdN6ANoCEdA2Xc8rM1TBXV9lChoBkdAgm8XfhuO0mgHTegDaAhHQNl3P8KgIyF1fZQoaAZHQIBCY3aSLZVoB03oA2gIR0DZd7drVOKwdX2UKGgGR0B4Xppwjt5VaAdN6ANoCEdA2Xjn4IKMN3V9lChoBkdAfyISt/4Ir2gHTegDaAhHQNl48IHPeHl1fZQoaAZHQH7QAhje9BdoB03oA2gIR0DZePOA7PpqdX2UKGgGR0CB9hB4Uvf1aAdN6ANoCEdA2XlsbutwJnV9lChoBkdAfwkaHKwIMWgHTegDaAhHQNl6k1Cw8nx1fZQoaAZHQH7DJq7AcktoB03oA2gIR0DZepyyWzF/dX2UKGgGR0CBm0rZJ04jaAdN6ANoCEdA2Xqf+evpyXV9lChoBkdAgCW5B1LamGgHTegDaAhHQNl7FSlSCOF1fZQoaAZHQHxcqJVKf4BoB03oA2gIR0DZfD7/ffoBdX2UKGgGR0B/lq6Ymb9ZaAdN6ANoCEdA2XxHr1/UfHV9lChoBkdAcM/Cpm29c2gHTegDaAhHQNl8Sqi48U51fZQoaAZHQFBqQdCE6DJoB0vOaAhHQNl8nKDoQnR1fZQoaAZHQHkuiSA6MitoB03oA2gIR0DZfL8bFS88dX2UKGgGR0CBblRZ2ZAqaAdN6ANoCEdA2X32hHbypnV9lChoBkdAgMJcbBGhEmgHTegDaAhHQNl+AuWv8qF1fZQoaAZHQHxIzPWxyGVoB03oA2gIR0DZflzavicYdX2UKGgGR0CAzTKTSsr/aAdN6ANoCEdA2X5/EjPfK3V9lChoBkdAgY6BOpKjBWgHTegDaAhHQNl/sigwoLJ1fZQoaAZHQH4c6EOAiFFoB03oA2gIR0DZf75Yq5LAdX2UKGgGR0CAfDvOQhfTaAdN6ANoCEdA2YAVSA6Mi3V9lChoBkdAfsh85CF9KGgHTegDaAhHQNmANx2W6bx1fZQoaAZHQH2sxrBTGYNoB03oA2gIR0DZgWpWyTpxdX2UKGgGR0CA2MeGO+7EaAdN6ANoCEdA2YF24LkS3HV9lChoBkdAgIUZCF9KEmgHTegDaAhHQNmBzexjawl1fZQoaAZHQH62Wki2UjdoB03oA2gIR0DZge+H+IdmdX2UKGgGR0BIlbtiQT24aAdLrmgIR0DZgjm+0w8GdX2UKGgGR0B/Pg6aLGaQaAdN6ANoCEdA2YMfBvaURnV9lChoBkdAfkxa6BiCrmgHTegDaAhHQNmDK+i8Fpx1fZQoaAZHQICxE/8l5W1oB03oA2gIR0DZg4LlnyuqdX2UKGgGR0B/pbbnHNoraAdN6ANoCEdA2YP0jGT9sXV9lChoBkdAfJb+qR2bG2gHTegDaAhHQNmE2xHG0eF1fZQoaAZHQH48m5Dqnm9oB03oA2gIR0DZhOa6ErXldX2UKGgGR0CCHmkM1CPZaAdN6ANoCEdA2YVBBPKuCHV9lChoBkdAgDBvGQ0XQGgHTegDaAhHQNmFrdGRV6x1fZQoaAZHQH+zAg1WKdhoB03oA2gIR0DZhpgV9F4LdX2UKGgGR0B9S7bah6BzaAdN6ANoCEdA2Yak2w3YMHV9lChoBkdAfQdp0fYBeWgHTegDaAhHQNmG+1h1DBx1fZQoaAZHQIB5nOfNA1NoB03oA2gIR0DZh2g2rGR3dX2UKGgGR0BwK6Dzyz5XaAdNNwJoCEdA2YfvfpljE3V9lChoBkdAe+lmxdIGyGgHTegDaAhHQNmIR1xCIDZ1fZQoaAZHQIDI45PuXu5oB03oA2gIR0DZiFPoOhCddX2UKGgGR0CAVjuxbB42aAdN6ANoCEdA2YkT+9rXUnV9lChoBkdAelpqVyFPBWgHTegDaAhHQNmJmSLyc1B1fZQoaAZHQH+uF+Vkc0doB03oA2gIR0DZifK8g6ltdX2UKGgGR0B/mv0PH1e0aAdN6ANoCEdA2Yn+QqI8AHV9lChoBkdAfDmu+yquKWgHTegDaAhHQNmKvXumaYx1fZQoaAZHQH66d3W4EwFoB03oA2gIR0DZi0SHZbpvdX2UKGgGR0B/qf6FdszmaAdN6ANoCEdA2YueDJU5uXV9lChoBkdAf7klEJBw/GgHTegDaAhHQNmLqkXYUWV1fZQoaAZHQHwBuRs/IKdoB03oA2gIR0DZjHIkpqh2dX2UKGgGR0CAJruUD+zdaAdN6ANoCEdA2Y0Cz7uUlnV9lChoBkdAf6MsmfGuLmgHTegDaAhHQNmNWkaMrEt1fZQoaAZHQH8cRFNL129oB03oA2gIR0DZjWXJW/8EdX2UKGgGR0B+79/8VHnVaAdN6ANoCEdA2Y4vfYSQHXV9lChoBkdAeaVzo2XLNmgHTegDaAhHQNmOvF+/gzh1fZQoaAZHQH/cRStNi6RoB03oA2gIR0DZjxXVlPJrdX2UKGgGR0B9gxjEvTPTaAdN6ANoCEdA2Y8iKdhAnnV9lChoBkdAfrghBqsU7GgHTegDaAhHQNmP6bz06HV1fZQoaAZHQH0+w4S6DoRoB03oA2gIR0DZkHDY287IdX2UKGgGR0B8GihYeT3ZaAdN6ANoCEdA2ZDNd4Vym3V9lChoBkdAgA8HeBQN1GgHTegDaAhHQNmQ2Q+EAYJ1fZQoaAZHQH+VUVJtix5oB03oA2gIR0DZkZZxIatLdX2UKGgGR0CAFsUB4lhPaAdN6ANoCEdA2ZIfR+BpYnV9lChoBkdAgMHQ+UyHmGgHTegDaAhHQNmSdoagmJF1fZQoaAZHQHq5hN/OMVFoB03oA2gIR0DZkoIR02cbdX2UKGgGR0CARntJFspHaAdN6ANoCEdA2ZNCCxu89XV9lChoBkdAe5rqMWGh3GgHTegDaAhHQNmTyC35N491fZQoaAZHQHzDc2eg+QloB03oA2gIR0DZlCMGMXJpdX2UKGgGR0B/UiPNmlImaAdN6ANoCEdA2ZQvy9EkSnV9lChoBkdAfaGdeIEbHmgHTegDaAhHQNmU7igbp/x1fZQoaAZHQH4c9N34bjtoB03oA2gIR0DZlXOeBg/kdX2UKGgGR0CAPPdcB2fTaAdN6ANoCEdA2ZXKCrcTJ3V9lChoBkdAgkBQzUI9kmgHTegDaAhHQNmV1jWGyop1ZS4="
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
95 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
},
|
97 |
+
"_n_updates": 468750,
|
98 |
"n_steps": 8,
|
99 |
"gamma": 0.992,
|
100 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76049e7193a3a378c08eb4dc8f17ddbc6d4c53a6bd255e1ebd44bb1ecb9a2e55
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56766
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cb8ffe3f2a0eb2f3b314714408726ba0398581b56a0d36a3fe18bc16f806ab5
|
3 |
size 56766
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16b9c9b7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16b9c9b830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16b9c9b8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16b9c9b950>", "_build": "<function ActorCriticPolicy._build at 0x7f16b9c9b9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f16b9c9ba70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16b9c9bb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f16b9c9bb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16b9c9bc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16b9c9bcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16b9c9bd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f16b9cd7ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 11000000, "_total_timesteps": 11000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662945513.544701, "learning_rate": 0.00095, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP08hLXcxj8WFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAzOBrvuuVuD5ybMQ+IotkPbMewzzv1K++MHdQvxH5+r74tEa+Uf2mvpNvDr2156E/TFrNvg7Lar61eUY/sXKHPv6dQD8/qVa/v4EMv7Z0Yr2RW2q/5v1FPYV47z33cdO+3sRlvwsGJj9MagA/w6tsv57+N75PcqO/yTYXPo5DBj8LDAw/ZZuUPxncxz6UjMG+2HluPy9ilL3K7Sg/Af2PPpXEkb/y+pw9+qW3uyhZY7+yjyc/Q+ztutHn5j6ILNO9ZRdmv0P2PD8MxnK/aIncPuCcjj+YXsW/TGoAP8OrbL/Bhne+Dm8hPy7JZD4zr8c8FC7lO3zsvz3K/0C/QduWvkorbT4agdO+6EhIv2HmWz8uJDS+jHagv5ufPj8gi2c8yU09P9BGkb8tshS/ghWkPMwz3761WKK/tYnZPoRXj7/exGW/CwYmP0xqAD/Dq2y/OJkhPTl97r3nNQY/wh1qvq4aiD+BiCw+QO3gPyNYtT+DY/K+m2CGvgND3z7g0ru/U/JivmYRxj4kaTTA6fl5vDnIoD8NBru88i4hP5d8QL8H02+/dXV+PXRre79n3hk+3sRlvwsGJj9MagA/LnSKP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASIsrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICs3dU9AAAAALCb6b8AAAAAbVkyvAAAAAAuyvY/AAAAACwxCz4AAAAAq13dPwAAAACET5I9AAAAAKDD3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCFyu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJ7WPQAAAAAUN+y/AAAAALAavj0AAAAA0PcAQAAAAABksCq9AAAAAKgM7z8AAAAAvC+APQAAAACjheu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr+cRNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJf1070AAAAAiAn3vwAAAADHUdM9AAAAABoU5D8AAAAAtdEQPgAAAACck/A/AAAAALqh07wAAAAAFKv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZvfjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRw0S6AAAAAL2V4r8AAAAALeuMvQAAAAD2P/Y/AAAAAEyt+T0AAAAAcZf4PwAAAAA8kgg8AAAAAMUH3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXsd6Skj5eMAWyUTegDjAF0lEdA0cUdBqKxcHV9lChoBkdAlhNeHi3ocWgHTegDaAhHQNHFWNLL6k91fZQoaAZHQJRbF7VrhzhoB03oA2gIR0DRxbQUTL4fdX2UKGgGR0CXZpMmnfl7aAdN6ANoCEdA0cYm4KhL5HV9lChoBkdAlb50mY0EYGgHTegDaAhHQNHGx9rsSkF1fZQoaAZHQJfZHWH1vl5oB03oA2gIR0DRxwOzfJmvdX2UKGgGR0CWmw58Sf16aAdN6ANoCEdA0cdhGEPDpHV9lChoBkdAlpJJ/kNnXmgHTegDaAhHQNHH1FuWKMx1fZQoaAZHQJYuLN/vv0BoB03oA2gIR0DRyHhoEjgRdX2UKGgGR0CVlxTho/RmaAdN6ANoCEdA0ci2ozeoDXV9lChoBkdAlW9nWz4UOGgHTegDaAhHQNHJEav7m+11fZQoaAZHQJUoy0IC2c9oB03oA2gIR0DRyYOkKu0UdX2UKGgGR0CVYd11W8yvaAdN6ANoCEdA0comsbNr03V9lChoBkdAlceJy+6AfGgHTegDaAhHQNHKY+GO+7F1fZQoaAZHQJVgoA93bEhoB03oA2gIR0DRysB44ZMtdX2UKGgGR0CWqNQNTcZcaAdN6ANoCEdA0cs0AEt/WnV9lChoBkdAl03hLTQVsWgHTegDaAhHQNHL2GuLaVV1fZQoaAZHQJWcDjZL7GhoB03oA2gIR0DRzBSwaBI4dX2UKGgGR0CXWwVNHpbEaAdN6ANoCEdA0cxwRUWEb3V9lChoBkdAkzbbSRbKR2gHTegDaAhHQNHM5CgkC3h1fZQoaAZHQJcnBev6j35oB03oA2gIR0DRzYcTwlSkdX2UKGgGR0CVpJntfG+9aAdN6ANoCEdA0c3DWXTmXHV9lChoBkdAlJepvHcUNGgHTegDaAhHQNHOH0k8ifR1fZQoaAZHQJagkhje9BdoB03oA2gIR0DRzpIv9LpSdX2UKGgGR0CVy8mUnogWaAdN6ANoCEdA0c8zXpGFz3V9lChoBkdAnGW4SL61s2gHTegDaAhHQNHPcIW1twd1fZQoaAZHQJiPxDx9XtBoB03oA2gIR0DRz8zJLdvbdX2UKGgGR0CYcbFdLQHBaAdN6ANoCEdA0dBEY4yXU3V9lChoBkdAlwDzLOiWV2gHTegDaAhHQNHQ643Ns311fZQoaAZHQJZ9Ve1KGtZoB03oA2gIR0DR0SlU83dcdX2UKGgGR0CTsDbW3BpIaAdN6ANoCEdA0dGFRq46O3V9lChoBkdAlCQtYW+GoWgHTegDaAhHQNHR+Cd8Rcx1fZQoaAZHQJZAFEBsANpoB03oA2gIR0DR0p2FJxvOdX2UKGgGR0CV2hUmD15CaAdN6ANoCEdA0dLbBas6rHV9lChoBkdAln3eXRgJC2gHTegDaAhHQNHTNc2aUiZ1fZQoaAZHQJdlyoKlYU5oB03oA2gIR0DR06sJBw+/dX2UKGgGR0CZB+uxrzoVaAdN6ANoCEdA0dRP2fChvnV9lChoBkdAewubL2YfGWgHTegDaAhHQNHUjNjXnQp1fZQoaAZHQJXwC9RJmNBoB03oA2gIR0DR1OkHryDqdX2UKGgGR0CVtwYWtU4raAdN6ANoCEdA0dVdd4FA3XV9lChoBkdAmIJicG1QZWgHTegDaAhHQNHWAIEGJN11fZQoaAZHQJfiTdhy8z1oB03oA2gIR0DR1j3T7VJ+dX2UKGgGR0CWIzQVbiZOaAdN6ANoCEdA0daYzcynDXV9lChoBkdAlq8WtEG7jGgHTegDaAhHQNHXC3LeQ+51fZQoaAZHQJeOeTTvy9VoB03oA2gIR0DR16954W1udX2UKGgGR0CWv3fqoqCpaAdN6ANoCEdA0dfr4gA6uHV9lChoBkdAlu3L1uivgWgHTegDaAhHQNHYTCwbEP11fZQoaAZHQJYQDww0waloB03oA2gIR0DR2MHCm/FjdX2UKGgGR0CTz6mTC+DfaAdN6ANoCEdA0dlp01qFiHV9lChoBkdAhYR3+MqBmWgHTegDaAhHQNHZpx/3Fkx1fZQoaAZHQJWBdqVQhwFoB03oA2gIR0DR2gO1y/9HdX2UKGgGR0CVZGNNJvpAaAdN6ANoCEdA0dp5i4J/onV9lChoBkdAlxj17IDHO2gHTegDaAhHQNHbGxLK3d91fZQoaAZHQJdXFxbSqlxoB03oA2gIR0DR21bh4t6HdX2UKGgGR0CYXLTnJT2naAdN6ANoCEdA0duybILgGnV9lChoBkdAl1ZuPV/c32gHTegDaAhHQNHcJKbnX/Z1fZQoaAZHQJgfFIe5nUVoB03oA2gIR0DR3MU5hjOLdX2UKGgGR0CZIrK9wm3OaAdN6ANoCEdA0d0CdE9dNXV9lChoBkdAl0V10gbIcWgHTegDaAhHQNHdXSofjjt1fZQoaAZHQJk4I97ngYRoB03oA2gIR0DR3c55LRKIdX2UKGgGR0CZBqAhje9BaAdN6ANoCEdA0d50AHE/B3V9lChoBkdAlvp6QA+6iGgHTegDaAhHQNHesNbcGkh1fZQoaAZHQI1uvKnvUjNoB03oA2gIR0DR3wv93r2QdX2UKGgGR0CYs97DEWIoaAdN6ANoCEdA0d9+aXrt3XV9lChoBkdAmLwwJTl1bWgHTegDaAhHQNHgIb1mJ3x1fZQoaAZHQJcmbHbRF7VoB03oA2gIR0DR4FzCm/FjdX2UKGgGR0CVguiu+yquaAdN6ANoCEdA0eC59jgAInV9lChoBkdAmhIEm2LHdWgHTegDaAhHQNHhLV1r6+F1fZQoaAZHQJoSjn9vS+hoB03oA2gIR0DR4c/lzU7TdX2UKGgGR0CWltu8scyWaAdN6ANoCEdA0eIMvAGjbnV9lChoBkdAmVe9DQZ4wGgHTegDaAhHQNHiaTp5eJJ1fZQoaAZHQJlZQXsPatdoB03oA2gIR0DR4tuvdM0xdX2UKGgGR0CYkmxZuAI6aAdN6ANoCEdA0eN8ZrHlwXV9lChoBkdAmHN7zbvgFWgHTegDaAhHQNHjuMSTQmh1fZQoaAZHQJXVfBJqZc9oB03oA2gIR0DR5BFjqfOEdX2UKGgGR0CZIJ2vStvGaAdN6ANoCEdA0eSCjqOcUnV9lChoBkdAlvfVcQiA2GgHTegDaAhHQNHlI4u5BkZ1fZQoaAZHQJlaiUW2w3ZoB03oA2gIR0DR5V5/kNnXdX2UKGgGR0CYqP5n13+uaAdN6ANoCEdA0eW54J/oaHV9lChoBkdAmMh71M/QjWgHTegDaAhHQNHmLFb7j1h1fZQoaAZHQJisALApKBdoB03oA2gIR0DR5tBMHryEdX2UKGgGR0CYebpY9xIbaAdN6ANoCEdA0ecLqM3qA3V9lChoBkdAmVx6L876pGgHTegDaAhHQNHnaD8HfMx1fZQoaAZHQJWnNFd9lVdoB03oA2gIR0DR592h8IAwdX2UKGgGR0CYRIP3i704aAdN6ANoCEdA0eiBfsu3+nV9lChoBkdAl9MMkMTewmgHTegDaAhHQNHovzU/fO51fZQoaAZHQJcArFfiPyVoB03oA2gIR0DR6RuW7e2vdX2UKGgGR0CZa5GsV+I/aAdN6ANoCEdA0emQ9pAUtnV9lChoBkdAmMA66OHWSWgHTegDaAhHQNHqOTPGACp1fZQoaAZHQJXVBaRp1zRoB03oA2gIR0DR6ne3UhFFdX2UKGgGR0CWra/tY0VKaAdN6ANoCEdA0erWFVT723V9lChoBkdAlsfK+nIhhmgHTegDaAhHQNHrSqhUR4B1fZQoaAZHQJgL26qbSZ1oB03oA2gIR0DR6+zUqhDgdX2UKGgGR0CWIMOqNp/PaAdN6ANoCEdA0ewoBMzuW3V9lChoBkdAmIEU7wKBumgHTegDaAhHQNHsgkx20Rh1fZQoaAZHQJajsePq9oNoB03oA2gIR0DR7PKtvGZNdX2UKGgGR0CYTkjFyaNNaAdN6ANoCEdA0e2VXp4bCXV9lChoBkdAlkoMmjTKDGgHTegDaAhHQNHt0DYNAkd1fZQoaAZHQJel5U70WdpoB03oA2gIR0DR7isomXw9dX2UKGgGR0CWv1Je3QUpaAdN6ANoCEdA0e6dscABDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 343750, "n_steps": 8, "gamma": 0.992, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef6f41e680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef6f41e710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef6f41e7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef6f41e830>", "_build": "<function ActorCriticPolicy._build at 0x7fef6f41e8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fef6f41e950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef6f41e9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fef6f41ea70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef6f41eb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef6f41eb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef6f41ec20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fef6f4733c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 15000000, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662981387.6141422, "learning_rate": 0.00095, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP08hLXcxj8WFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAR8BXvijBij7+qUI/E0kgv60QAT9WaYQ9NDlzvlVKiT97zI4/nprQO+mHy79aWQW9Dsp1P/so5rtDwvC+tjEWPYpTmb+o7BY6FKT4vpqouTywx4a/WZc9O0XS7j3oE/W8/xguP9ISuT64+RA/Zfp9P3jpEz5mFGq9FFwlP/73Jb9hJww/Xp+QPaXpxr41hmQ/dswXP9YDS7yq0MC/OYG/vJ6zdD+2VBe8kq3cvvq7yzwOt5i//ztFO+mROL8u1PY8zFZCvnp0Ab0lXJU/m0cJvf8YLj/SErk+uPkQP2X6fT+aks4+f0lNPnwYPj9EOju/DA0RP+73zz1aHXS+OQGBP/bsgj8w9iC98Zqfv2Dw5rsAGnU/YHsCvZUNOr96Icq8O+iYv/tvbDycN3K/DzCRvj0yhr83M4U8hTiVP26YgL3/GC4/0hK5Prj5ED9l+n0/yneJPiZBwz4nAkg/yAKgv5inKD/V9AW9lO7Gvliviz86GFg/qVuuvpRry7/wFkM9ecJ1PyJ4AL4loR698OIpwNyImb9P/3M9I0eNvwRE0T4nW1m+/wYIvqImjj+32xS+/xguP9ANMcC4+RA/Zfp9P5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAALHnwTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyn1m9AAAAAMYX+L8AAAAA4b/APQAAAAADouY/AAAAANvP5bsAAAAAafEAQAAAAADlpuC9AAAAAJTn8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdok20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxe6evQAAAAAXCeK/AAAAADV4Tj0AAAAAeXH6PwAAAAB6tEC8AAAAANgC/z8AAAAAGZH5PQAAAAB3teO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqyNCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOzWBb4AAAAAFcv8vwAAAADqLDO9AAAAAK916j8AAAAAHz/vPAAAAACXfug/AAAAAJZhu7oAAAAAAInlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJIBwDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj4dm9AAAAAEKdAMAAAAAA0MI0PQAAAAAGUfs/AAAAAIDL37wAAAAAKfjkPwAAAACe5/y9AAAAAO4OAMAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHuQrpV0cOuMAWyUTegDjAF0lEdA2Wzn+4smOXV9lChoBkdAgHkAOBlMAWgHTegDaAhHQNls62+0w8J1fZQoaAZHQHqrLmp2ll9oB03oA2gIR0DZbWq9ugpSdX2UKGgGR0B+ijPVurIYaAdN6ANoCEdA2W6lBZIQOHV9lChoBkdAeXpmFJxvN2gHTegDaAhHQNluriO3lS11fZQoaAZHQH9JgOOKfnRoB03oA2gIR0DZbrGBFuvVdX2UKGgGR0B6LEth/iHZaAdN6ANoCEdA2W8sv0AcUHV9lChoBkdAgXuuCwr1/WgHTegDaAhHQNlwZTlcQiB1fZQoaAZHQHmIZ3kgfU5oB03oA2gIR0DZcG3fm9xqdX2UKGgGR0B5k98LKFIvaAdN6ANoCEdA2XBxH6/IsHV9lChoBkdAgIx8w5/9YWgHTegDaAhHQNlw6KV2Rq51fZQoaAZHQIBL8qOLiuNoB03oA2gIR0DZchrBhx5tdX2UKGgGR0B/k2Tt9hJAaAdN6ANoCEdA2XIk2CuloHV9lChoBkdAfbyUB4lhPWgHTegDaAhHQNlyKEwWWQh1fZQoaAZHQH6CNRJmNBFoB03oA2gIR0DZcqLZ26kJdX2UKGgGR0B8wzK+zt1IaAdN6ANoCEdA2XPNWBjFynV9lChoBkdAfmj6Mzdk8WgHTegDaAhHQNlz1fKlpGp1fZQoaAZHQIDSMF0PpY9oB03oA2gIR0DZc9kGNaQndX2UKGgGR0B/FyenQ6ZIaAdN6ANoCEdA2XRL3oLXtnV9lChoBkdAgJxEkB0ZFWgHTegDaAhHQNl1eUWZZ0V1fZQoaAZHQHDVbrPdEb5oB03oA2gIR0DZdYIR3/xUdX2UKGgGR0B//DRRdhRZaAdN6ANoCEdA2XWFDVYp2HV9lChoBkdAfW6qrR0EHWgHTegDaAhHQNl1/fHtF8Z1fZQoaAZHQH39Z2t+1BtoB03oA2gIR0DZdzPGS6lMdX2UKGgGR0CCIK9HMEA6aAdN6ANoCEdA2Xc8rM1TBXV9lChoBkdAgm8XfhuO0mgHTegDaAhHQNl3P8KgIyF1fZQoaAZHQIBCY3aSLZVoB03oA2gIR0DZd7drVOKwdX2UKGgGR0B4Xppwjt5VaAdN6ANoCEdA2Xjn4IKMN3V9lChoBkdAfyISt/4Ir2gHTegDaAhHQNl48IHPeHl1fZQoaAZHQH7QAhje9BdoB03oA2gIR0DZePOA7PpqdX2UKGgGR0CB9hB4Uvf1aAdN6ANoCEdA2XlsbutwJnV9lChoBkdAfwkaHKwIMWgHTegDaAhHQNl6k1Cw8nx1fZQoaAZHQH7DJq7AcktoB03oA2gIR0DZepyyWzF/dX2UKGgGR0CBm0rZJ04jaAdN6ANoCEdA2Xqf+evpyXV9lChoBkdAgCW5B1LamGgHTegDaAhHQNl7FSlSCOF1fZQoaAZHQHxcqJVKf4BoB03oA2gIR0DZfD7/ffoBdX2UKGgGR0B/lq6Ymb9ZaAdN6ANoCEdA2XxHr1/UfHV9lChoBkdAcM/Cpm29c2gHTegDaAhHQNl8Sqi48U51fZQoaAZHQFBqQdCE6DJoB0vOaAhHQNl8nKDoQnR1fZQoaAZHQHkuiSA6MitoB03oA2gIR0DZfL8bFS88dX2UKGgGR0CBblRZ2ZAqaAdN6ANoCEdA2X32hHbypnV9lChoBkdAgMJcbBGhEmgHTegDaAhHQNl+AuWv8qF1fZQoaAZHQHxIzPWxyGVoB03oA2gIR0DZflzavicYdX2UKGgGR0CAzTKTSsr/aAdN6ANoCEdA2X5/EjPfK3V9lChoBkdAgY6BOpKjBWgHTegDaAhHQNl/sigwoLJ1fZQoaAZHQH4c6EOAiFFoB03oA2gIR0DZf75Yq5LAdX2UKGgGR0CAfDvOQhfTaAdN6ANoCEdA2YAVSA6Mi3V9lChoBkdAfsh85CF9KGgHTegDaAhHQNmANx2W6bx1fZQoaAZHQH2sxrBTGYNoB03oA2gIR0DZgWpWyTpxdX2UKGgGR0CA2MeGO+7EaAdN6ANoCEdA2YF24LkS3HV9lChoBkdAgIUZCF9KEmgHTegDaAhHQNmBzexjawl1fZQoaAZHQH62Wki2UjdoB03oA2gIR0DZge+H+IdmdX2UKGgGR0BIlbtiQT24aAdLrmgIR0DZgjm+0w8GdX2UKGgGR0B/Pg6aLGaQaAdN6ANoCEdA2YMfBvaURnV9lChoBkdAfkxa6BiCrmgHTegDaAhHQNmDK+i8Fpx1fZQoaAZHQICxE/8l5W1oB03oA2gIR0DZg4LlnyuqdX2UKGgGR0B/pbbnHNoraAdN6ANoCEdA2YP0jGT9sXV9lChoBkdAfJb+qR2bG2gHTegDaAhHQNmE2xHG0eF1fZQoaAZHQH48m5Dqnm9oB03oA2gIR0DZhOa6ErXldX2UKGgGR0CCHmkM1CPZaAdN6ANoCEdA2YVBBPKuCHV9lChoBkdAgDBvGQ0XQGgHTegDaAhHQNmFrdGRV6x1fZQoaAZHQH+zAg1WKdhoB03oA2gIR0DZhpgV9F4LdX2UKGgGR0B9S7bah6BzaAdN6ANoCEdA2Yak2w3YMHV9lChoBkdAfQdp0fYBeWgHTegDaAhHQNmG+1h1DBx1fZQoaAZHQIB5nOfNA1NoB03oA2gIR0DZh2g2rGR3dX2UKGgGR0BwK6Dzyz5XaAdNNwJoCEdA2YfvfpljE3V9lChoBkdAe+lmxdIGyGgHTegDaAhHQNmIR1xCIDZ1fZQoaAZHQIDI45PuXu5oB03oA2gIR0DZiFPoOhCddX2UKGgGR0CAVjuxbB42aAdN6ANoCEdA2YkT+9rXUnV9lChoBkdAelpqVyFPBWgHTegDaAhHQNmJmSLyc1B1fZQoaAZHQH+uF+Vkc0doB03oA2gIR0DZifK8g6ltdX2UKGgGR0B/mv0PH1e0aAdN6ANoCEdA2Yn+QqI8AHV9lChoBkdAfDmu+yquKWgHTegDaAhHQNmKvXumaYx1fZQoaAZHQH66d3W4EwFoB03oA2gIR0DZi0SHZbpvdX2UKGgGR0B/qf6FdszmaAdN6ANoCEdA2YueDJU5uXV9lChoBkdAf7klEJBw/GgHTegDaAhHQNmLqkXYUWV1fZQoaAZHQHwBuRs/IKdoB03oA2gIR0DZjHIkpqh2dX2UKGgGR0CAJruUD+zdaAdN6ANoCEdA2Y0Cz7uUlnV9lChoBkdAf6MsmfGuLmgHTegDaAhHQNmNWkaMrEt1fZQoaAZHQH8cRFNL129oB03oA2gIR0DZjWXJW/8EdX2UKGgGR0B+79/8VHnVaAdN6ANoCEdA2Y4vfYSQHXV9lChoBkdAeaVzo2XLNmgHTegDaAhHQNmOvF+/gzh1fZQoaAZHQH/cRStNi6RoB03oA2gIR0DZjxXVlPJrdX2UKGgGR0B9gxjEvTPTaAdN6ANoCEdA2Y8iKdhAnnV9lChoBkdAfrghBqsU7GgHTegDaAhHQNmP6bz06HV1fZQoaAZHQH0+w4S6DoRoB03oA2gIR0DZkHDY287IdX2UKGgGR0B8GihYeT3ZaAdN6ANoCEdA2ZDNd4Vym3V9lChoBkdAgA8HeBQN1GgHTegDaAhHQNmQ2Q+EAYJ1fZQoaAZHQH+VUVJtix5oB03oA2gIR0DZkZZxIatLdX2UKGgGR0CAFsUB4lhPaAdN6ANoCEdA2ZIfR+BpYnV9lChoBkdAgMHQ+UyHmGgHTegDaAhHQNmSdoagmJF1fZQoaAZHQHq5hN/OMVFoB03oA2gIR0DZkoIR02cbdX2UKGgGR0CARntJFspHaAdN6ANoCEdA2ZNCCxu89XV9lChoBkdAe5rqMWGh3GgHTegDaAhHQNmTyC35N491fZQoaAZHQHzDc2eg+QloB03oA2gIR0DZlCMGMXJpdX2UKGgGR0B/UiPNmlImaAdN6ANoCEdA2ZQvy9EkSnV9lChoBkdAfaGdeIEbHmgHTegDaAhHQNmU7igbp/x1fZQoaAZHQH4c9N34bjtoB03oA2gIR0DZlXOeBg/kdX2UKGgGR0CAPPdcB2fTaAdN6ANoCEdA2ZXKCrcTJ3V9lChoBkdAgkBQzUI9kmgHTegDaAhHQNmV1jWGyop1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 468750, "n_steps": 8, "gamma": 0.992, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef99a08713dac8042ad3c95330d94d98a7d293a5e5c5ebc21f9753acaa55e96c
|
3 |
+
size 465438
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 490.33812885251825, "std_reward": 55.67113434056032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-12T18:33:44.572360"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2763
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42fa20f071a536336c6d8cafeb3343f536692fc0ecdb6d9fcfe312e488585d17
|
3 |
size 2763
|