File size: 2,877 Bytes
d79e38c c75c1e2 d79e38c c75c1e2 bc29660 d79e38c bc29660 d79e38c bc29660 c75c1e2 d79e38c cded3c0 d79e38c c75c1e2 bc29660 d79e38c 82a6425 d79e38c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.82
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2523
- Accuracy: 0.82
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7948 | 1.0 | 113 | 1.6788 | 0.46 |
| 1.164 | 2.0 | 226 | 1.1871 | 0.54 |
| 0.8531 | 3.0 | 339 | 1.0579 | 0.66 |
| 0.8304 | 4.0 | 452 | 0.8808 | 0.73 |
| 0.2531 | 5.0 | 565 | 0.9542 | 0.74 |
| 0.3144 | 6.0 | 678 | 1.0149 | 0.78 |
| 0.2775 | 7.0 | 791 | 0.8875 | 0.77 |
| 0.0521 | 8.0 | 904 | 1.2458 | 0.78 |
| 0.0106 | 9.0 | 1017 | 0.9013 | 0.81 |
| 0.0088 | 10.0 | 1130 | 0.9802 | 0.84 |
| 0.0023 | 11.0 | 1243 | 1.1693 | 0.82 |
| 0.1901 | 12.0 | 1356 | 1.2588 | 0.82 |
| 0.0006 | 13.0 | 1469 | 1.2267 | 0.8 |
| 0.0005 | 14.0 | 1582 | 1.3400 | 0.81 |
| 0.0005 | 15.0 | 1695 | 1.1049 | 0.83 |
| 0.0004 | 16.0 | 1808 | 1.3025 | 0.8 |
| 0.1313 | 17.0 | 1921 | 1.2627 | 0.81 |
| 0.0003 | 18.0 | 2034 | 1.1620 | 0.84 |
| 0.0003 | 19.0 | 2147 | 1.2217 | 0.82 |
| 0.0003 | 20.0 | 2260 | 1.2523 | 0.82 |
### Framework versions
- Transformers 4.32.1
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|