|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.78 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1493 |
|
- Accuracy: 0.78 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00018 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.7553 | 1.0 | 113 | 1.5918 | 0.47 | |
|
| 1.0465 | 2.0 | 226 | 0.9806 | 0.68 | |
|
| 1.2995 | 3.0 | 339 | 0.9627 | 0.72 | |
|
| 1.1928 | 4.0 | 452 | 0.9208 | 0.71 | |
|
| 0.3715 | 5.0 | 565 | 0.5924 | 0.81 | |
|
| 0.4474 | 6.0 | 678 | 1.0245 | 0.71 | |
|
| 0.4553 | 7.0 | 791 | 0.8025 | 0.79 | |
|
| 0.029 | 8.0 | 904 | 1.3956 | 0.71 | |
|
| 0.2059 | 9.0 | 1017 | 1.1544 | 0.79 | |
|
| 0.1797 | 10.0 | 1130 | 1.6616 | 0.74 | |
|
| 0.0009 | 11.0 | 1243 | 0.9263 | 0.86 | |
|
| 0.1761 | 12.0 | 1356 | 0.9989 | 0.85 | |
|
| 0.0006 | 13.0 | 1469 | 1.2108 | 0.8 | |
|
| 0.0006 | 14.0 | 1582 | 0.9643 | 0.83 | |
|
| 0.0005 | 15.0 | 1695 | 1.1004 | 0.8 | |
|
| 0.0004 | 16.0 | 1808 | 1.0556 | 0.82 | |
|
| 0.1084 | 17.0 | 1921 | 1.1447 | 0.81 | |
|
| 0.0003 | 18.0 | 2034 | 1.1467 | 0.82 | |
|
| 0.0003 | 19.0 | 2147 | 1.1723 | 0.8 | |
|
| 0.0003 | 20.0 | 2260 | 1.1493 | 0.78 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|