metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.82
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2523
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7948 | 1.0 | 113 | 1.6788 | 0.46 |
1.164 | 2.0 | 226 | 1.1871 | 0.54 |
0.8531 | 3.0 | 339 | 1.0579 | 0.66 |
0.8304 | 4.0 | 452 | 0.8808 | 0.73 |
0.2531 | 5.0 | 565 | 0.9542 | 0.74 |
0.3144 | 6.0 | 678 | 1.0149 | 0.78 |
0.2775 | 7.0 | 791 | 0.8875 | 0.77 |
0.0521 | 8.0 | 904 | 1.2458 | 0.78 |
0.0106 | 9.0 | 1017 | 0.9013 | 0.81 |
0.0088 | 10.0 | 1130 | 0.9802 | 0.84 |
0.0023 | 11.0 | 1243 | 1.1693 | 0.82 |
0.1901 | 12.0 | 1356 | 1.2588 | 0.82 |
0.0006 | 13.0 | 1469 | 1.2267 | 0.8 |
0.0005 | 14.0 | 1582 | 1.3400 | 0.81 |
0.0005 | 15.0 | 1695 | 1.1049 | 0.83 |
0.0004 | 16.0 | 1808 | 1.3025 | 0.8 |
0.1313 | 17.0 | 1921 | 1.2627 | 0.81 |
0.0003 | 18.0 | 2034 | 1.1620 | 0.84 |
0.0003 | 19.0 | 2147 | 1.2217 | 0.82 |
0.0003 | 20.0 | 2260 | 1.2523 | 0.82 |
Framework versions
- Transformers 4.32.1
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3