layoutlm-funsd / README.md
jaeger1's picture
layoutlm-funsd
a08bd38
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6657
  • Answer: {'precision': 0.7226519337016575, 'recall': 0.8084054388133498, 'f1': 0.763127187864644, 'number': 809}
  • Header: {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119}
  • Question: {'precision': 0.7931960608773501, 'recall': 0.831924882629108, 'f1': 0.8120989917506873, 'number': 1065}
  • Overall Precision: 0.7331
  • Overall Recall: 0.7923
  • Overall F1: 0.7615
  • Overall Accuracy: 0.8136

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7892 1.0 10 1.6086 {'precision': 0.020948180815876516, 'recall': 0.023485784919653894, 'f1': 0.022144522144522148, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20356472795497185, 'recall': 0.20375586854460093, 'f1': 0.20366025340215863, 'number': 1065} 0.1196 0.1184 0.1190 0.3742
1.4438 2.0 20 1.2175 {'precision': 0.22015915119363394, 'recall': 0.20519159456118666, 'f1': 0.2124120281509917, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4544037412314887, 'recall': 0.5474178403755868, 'f1': 0.4965928449744464, 'number': 1065} 0.3677 0.3758 0.3717 0.5883
1.0512 3.0 30 0.9159 {'precision': 0.5192519251925193, 'recall': 0.5834363411619283, 'f1': 0.5494761350407451, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6103327495621717, 'recall': 0.6544600938967137, 'f1': 0.6316266425011329, 'number': 1065} 0.5615 0.5866 0.5737 0.7102
0.8045 4.0 40 0.7549 {'precision': 0.6132264529058116, 'recall': 0.7564894932014833, 'f1': 0.6773657996679578, 'number': 809} {'precision': 0.22, 'recall': 0.09243697478991597, 'f1': 0.13017751479289943, 'number': 119} {'precision': 0.6795580110497238, 'recall': 0.6929577464788732, 'f1': 0.6861924686192468, 'number': 1065} 0.6378 0.6829 0.6596 0.7538
0.6559 5.0 50 0.6887 {'precision': 0.6546227417640808, 'recall': 0.761433868974042, 'f1': 0.704, 'number': 809} {'precision': 0.25, 'recall': 0.16806722689075632, 'f1': 0.20100502512562815, 'number': 119} {'precision': 0.6964285714285714, 'recall': 0.7323943661971831, 'f1': 0.7139588100686498, 'number': 1065} 0.6614 0.7105 0.6851 0.7764
0.547 6.0 60 0.6515 {'precision': 0.6659793814432989, 'recall': 0.7985166872682324, 'f1': 0.7262507026419337, 'number': 809} {'precision': 0.2891566265060241, 'recall': 0.20168067226890757, 'f1': 0.23762376237623764, 'number': 119} {'precision': 0.7140439932318104, 'recall': 0.7924882629107981, 'f1': 0.7512238540275923, 'number': 1065} 0.6774 0.7597 0.7162 0.7928
0.4923 7.0 70 0.6337 {'precision': 0.6784188034188035, 'recall': 0.7849196538936959, 'f1': 0.7277936962750717, 'number': 809} {'precision': 0.2761904761904762, 'recall': 0.24369747899159663, 'f1': 0.2589285714285714, 'number': 119} {'precision': 0.7371575342465754, 'recall': 0.8084507042253521, 'f1': 0.7711598746081505, 'number': 1065} 0.6904 0.7652 0.7258 0.8052
0.4463 8.0 80 0.6478 {'precision': 0.7045454545454546, 'recall': 0.7663782447466008, 'f1': 0.7341622261693309, 'number': 809} {'precision': 0.2831858407079646, 'recall': 0.2689075630252101, 'f1': 0.27586206896551724, 'number': 119} {'precision': 0.751937984496124, 'recall': 0.819718309859155, 'f1': 0.7843665768194069, 'number': 1065} 0.7080 0.7652 0.7355 0.8048
0.3974 9.0 90 0.6389 {'precision': 0.7029379760609358, 'recall': 0.7985166872682324, 'f1': 0.7476851851851851, 'number': 809} {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119} {'precision': 0.7609254498714653, 'recall': 0.8338028169014085, 'f1': 0.7956989247311828, 'number': 1065} 0.7082 0.7878 0.7458 0.8060
0.3599 10.0 100 0.6429 {'precision': 0.7177777777777777, 'recall': 0.7985166872682324, 'f1': 0.7559976594499708, 'number': 809} {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} {'precision': 0.7795275590551181, 'recall': 0.8366197183098592, 'f1': 0.8070652173913043, 'number': 1065} 0.7274 0.7888 0.7569 0.8139
0.3227 11.0 110 0.6510 {'precision': 0.710239651416122, 'recall': 0.8059332509270705, 'f1': 0.755066589461494, 'number': 809} {'precision': 0.28205128205128205, 'recall': 0.2773109243697479, 'f1': 0.2796610169491525, 'number': 119} {'precision': 0.7882037533512064, 'recall': 0.828169014084507, 'f1': 0.8076923076923077, 'number': 1065} 0.7275 0.7863 0.7557 0.8111
0.3156 12.0 120 0.6579 {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809} {'precision': 0.2920353982300885, 'recall': 0.2773109243697479, 'f1': 0.28448275862068967, 'number': 119} {'precision': 0.7926391382405745, 'recall': 0.8291079812206573, 'f1': 0.8104635153740247, 'number': 1065} 0.7372 0.7883 0.7619 0.8123
0.2935 13.0 130 0.6596 {'precision': 0.7119386637458927, 'recall': 0.8034610630407911, 'f1': 0.7549361207897795, 'number': 809} {'precision': 0.2846715328467153, 'recall': 0.3277310924369748, 'f1': 0.3046875, 'number': 119} {'precision': 0.7852112676056338, 'recall': 0.8375586854460094, 'f1': 0.8105406633348478, 'number': 1065} 0.7232 0.7933 0.7566 0.8131
0.2814 14.0 140 0.6629 {'precision': 0.7189901207464325, 'recall': 0.8096415327564895, 'f1': 0.7616279069767442, 'number': 809} {'precision': 0.2923076923076923, 'recall': 0.31932773109243695, 'f1': 0.3052208835341365, 'number': 119} {'precision': 0.7924528301886793, 'recall': 0.828169014084507, 'f1': 0.8099173553719008, 'number': 1065} 0.7312 0.7903 0.7596 0.8132
0.2762 15.0 150 0.6657 {'precision': 0.7226519337016575, 'recall': 0.8084054388133498, 'f1': 0.763127187864644, 'number': 809} {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119} {'precision': 0.7931960608773501, 'recall': 0.831924882629108, 'f1': 0.8120989917506873, 'number': 1065} 0.7331 0.7923 0.7615 0.8136

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3