|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-3B-Instruct |
|
language: |
|
- ja |
|
- en |
|
library_name: transformers |
|
--- |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
### llm-jp-eval script(colab) |
|
``` |
|
!git clone https://github.com/llm-jp/llm-jp-eval.git |
|
!cd llm-jp-eval && pip install -e . |
|
!cd llm-jp-eval && python scripts/preprocess_dataset.py --dataset-name all --output-dir ./dataset_dir |
|
!cd llm-jp-eval && python scripts/evaluate_llm.py -cn config.yaml model.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview tokenizer.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview dataset_dir=./dataset_dir/1.4.1/evaluation/test |
|
``` |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
|
|
|
|
|
|
| llm-jp-eval| Qwen2.5-3B-Instruct | finetuning-model | |
|
|:-----------|----------------------:|-----------------------:| |
|
| AVG | 0.4921 | 0.4895 | |
|
| CG | 0.1000 | 0 | |
|
| EL | 0.4770 | 0.4431 | |
|
| FA | 0.1210 | 0.1246 | |
|
| HE | 0.5550 | 0.5650 | |
|
| MC | 0.7133 | 0.7900 | |
|
| MR | 0.5400 | 0.6100 | |
|
| MT | 0.6391 | 0.5982 | |
|
| NLI | 0.6640 | 0.6640 | |
|
| QA | 0.2638 | 0.3165 | |
|
| RC | 0.8481 | 0.7837 | |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |