Edit model card

swinv2-small-patch4-window8-256-finetuned-eurosat

This model is a fine-tuned version of microsoft/swinv2-small-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2717
  • Accuracy: 0.6875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.6579 0.6339
No log 2.0 8 0.7129 0.5
0.6364 3.0 12 0.6774 0.5982
0.6364 4.0 16 0.6584 0.6786
0.3486 5.0 20 0.6864 0.6786
0.3486 6.0 24 0.8473 0.6429
0.3486 7.0 28 0.9735 0.6339
0.1224 8.0 32 0.8121 0.6964
0.1224 9.0 36 1.2379 0.6429
0.0424 10.0 40 1.1585 0.6875
0.0424 11.0 44 1.5274 0.6161
0.0424 12.0 48 1.1415 0.6607
0.0353 13.0 52 1.4422 0.6518
0.0353 14.0 56 1.6677 0.625
0.0141 15.0 60 1.1960 0.6696
0.0141 16.0 64 1.5515 0.625
0.0141 17.0 68 1.7990 0.6161
0.0135 18.0 72 1.4437 0.6607
0.0135 19.0 76 1.2816 0.7054
0.0073 20.0 80 1.2717 0.6875

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
31
Safetensors
Model size
49M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jaimin/swinv2-small-patch4-window8-256-finetuned-eurosat

Finetuned
(4)
this model

Evaluation results