hybrid-cnn-vit / README.md
jalaneunos's picture
Model save
5f03a8b verified
metadata
license: apache-2.0
base_model: google/vit-hybrid-base-bit-384
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hybrid-cnn-vit
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8707767328456983

hybrid-cnn-vit

This model is a fine-tuned version of google/vit-hybrid-base-bit-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3384
  • Accuracy: 0.8708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5277 1.0 202 0.3903 0.8210
0.4623 2.0 404 0.3478 0.8415
0.4497 3.0 606 0.3334 0.8520
0.4074 4.0 808 0.3397 0.8460
0.3552 5.0 1010 0.3227 0.8624
0.3637 6.0 1212 0.3230 0.8617
0.3316 7.0 1414 0.3189 0.8673
0.31 8.0 1616 0.3804 0.8492
0.2324 9.0 1818 0.3382 0.8662
0.234 10.0 2020 0.3384 0.8708

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2