Food Order Understanding in Korean

This is a LoRA adapter as a result of fine-tuning the pre-trained model meta-llama/Llama-2-13b-chat-hf. It is designed with the expectation of understanding Korean food ordering sentences, and analyzing food menus, option names, and quantities.

Usage

Here is an example of loading the model. Note the pretrained model is meta-llama/Llama-2-13b-chat-hf.

peft_model_id = "jangmin/qlora-llama2-13b-chat-hf-food-order-understanding-30K"

config = PeftConfig.from_pretrained(peft_model_id)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, cache_dir=cache_dir, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, cache_dir=cache_dir)

model.eval()

Inferece can be done as follows.

instruction_prompt_template = """
๋‹ค์Œ์€ ๋งค์žฅ์—์„œ ๊ณ ๊ฐ์ด ์Œ์‹์„ ์ฃผ๋ฌธํ•˜๋Š” ์ฃผ๋ฌธ ๋ฌธ์žฅ์ด๋‹ค. ์ด๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์Œ์‹๋ช…, ์˜ต์…˜, ์ˆ˜๋Ÿ‰์„ ์ถ”์ถœํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์˜๋„๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•œ๋‹ค.
๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์™„์„ฑํ•ด์ฃผ๊ธฐ ๋ฐ”๋ž€๋‹ค.

### ์ฃผ๋ฌธ ๋ฌธ์žฅ: {0} ### ๋ถ„์„ ๊ฒฐ๊ณผ: 
"""
def gen(x):
    q = instruction_prompt_template.format(x)
    gened = model.generate(
        **tokenizer(
            q, 
            return_tensors='pt', 
            return_token_type_ids=False
        ).to('cuda'), 
        max_new_tokens=256,
        early_stopping=True,
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id
    )
    decoded_results = tokenizer.batch_decode(gened, skip_special_tokens=True)
    return decoded_results[0]

A generated sample is as follows.

print(gen("์•„์ด์Šค์•„๋ฉ”๋ฆฌ์นด๋…ธ ํ†จ์‚ฌ์ด์ฆˆ ํ•œ์ž” ํ•˜๊ณ ์š”. ๋”ธ๊ธฐ์Šค๋ฌด๋”” ํ•œ์ž” ์ฃผ์„ธ์š”. ๋˜, ์ฝœ๋“œ๋ธŒ๋ฃจ๋ผ๋–ผ ํ•˜๋‚˜์š”."))
๋‹ค์Œ์€ ๋งค์žฅ์—์„œ ๊ณ ๊ฐ์ด ์Œ์‹์„ ์ฃผ๋ฌธํ•˜๋Š” ์ฃผ๋ฌธ ๋ฌธ์žฅ์ด๋‹ค. ์ด๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์Œ์‹๋ช…, ์˜ต์…˜๋ช…, ์ˆ˜๋Ÿ‰์„ ์ถ”์ถœํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์˜๋„๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•œ๋‹ค.
๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์™„์„ฑํ•ด์ฃผ๊ธฐ ๋ฐ”๋ž€๋‹ค.

### ๋ช…๋ น: ์•„์ด์Šค์•„๋ฉ”๋ฆฌ์นด๋…ธ ํ†จ์‚ฌ์ด์ฆˆ ํ•œ์ž” ํ•˜๊ณ ์š”. ๋”ธ๊ธฐ์Šค๋ฌด๋”” ํ•œ์ž” ์ฃผ์„ธ์š”. ๋˜, ์ฝœ๋“œ๋ธŒ๋ฃจ๋ผ๋–ผ ํ•˜๋‚˜์š”. ### ์‘๋‹ต:
 - ๋ถ„์„ ๊ฒฐ๊ณผ 0: ์Œ์‹๋ช…:์•„์ด์Šค์•„๋ฉ”๋ฆฌ์นด๋…ธ, ์˜ต์…˜:ํ†จ์‚ฌ์ด์ฆˆ, ์ˆ˜๋Ÿ‰:ํ•œ์ž”
- ๋ถ„์„ ๊ฒฐ๊ณผ 1: ์Œ์‹๋ช…:๋”ธ๊ธฐ์Šค๋ฌด๋””, ์ˆ˜๋Ÿ‰:ํ•œ์ž”
- ๋ถ„์„ ๊ฒฐ๊ณผ 2: ์Œ์‹๋ช…:์ฝœ๋“œ๋ธŒ๋ฃจ๋ผ๋–ผ, ์ˆ˜๋Ÿ‰:ํ•˜๋‚˜

Training

Fine-tuning was conducted using https://github.com/artidoro/qlora on an RTX-4090 machine, and took approximately 9 hours. The max_steps parameter was set to 5,000, which allowed nearly two complete scans of the entire dataset. Below is my training script.

python qlora.py \
    --cache_dir /Jupyter/huggingface/.cache \
    --model_name_or_path meta-llama/Llama-2-13b-chat-hf \
    --use_auth \
    --output_dir ../output/llama2-gpt4-30k-food-order-understanding-13b \
    --logging_steps 10 \
    --save_strategy steps \
    --data_seed 42 \
    --save_steps 500 \
    --save_total_limit 40 \
    --evaluation_strategy steps \
    --eval_dataset_size 1024 \
    --max_eval_samples 1000 \
    --per_device_eval_batch_size 12 \
    --max_new_tokens 32 \
    --dataloader_num_workers 1 \
    --group_by_length \
    --logging_strategy steps \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --lora_r 64 \
    --lora_alpha 16 \
    --lora_modules all \
    --double_quant \
    --quant_type nf4 \
    --bf16 \
    --bits 4 \
    --warmup_ratio 0.03 \
    --lr_scheduler_type constant \
    --gradient_checkpointing \
    --dataset /Jupyter/dev_src/ASR-for-noisy-edge-devices/data/food-order-understanding-gpt4-30k.json \
    --target_max_len 512 \
    --per_device_train_batch_size 12 \
    --gradient_accumulation_steps 1 \
    --max_steps 5000 \
    --eval_steps 500 \
    --learning_rate 0.0002 \
    --adam_beta2 0.999 \
    --max_grad_norm 0.3 \
    --lora_dropout 0.1 \
    --weight_decay 0.0 \
    --seed 0 \
    --report_to tensorboard

Dataset

The dataset was constructed using GPT-API with gpt-4. A prompt template is desginged to generate examples of sentence pairs of a food order and its understanding. Total 30k examples were generated. Note that it cost about $400 to generate 30K examples through 3,000 API calls.

Some generated examples are as follows:

{
  'input': '๋‹ค์Œ์€ ๋งค์žฅ์—์„œ ๊ณ ๊ฐ์ด ์Œ์‹์„ ์ฃผ๋ฌธํ•˜๋Š” ์ฃผ๋ฌธ ๋ฌธ์žฅ์ด๋‹ค. ์ด๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์Œ์‹๋ช…, ์˜ต์…˜๋ช…, ์ˆ˜๋Ÿ‰์„ ์ถ”์ถœํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์˜๋„๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•œ๋‹ค.\n๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์™„์„ฑํ•ด์ฃผ๊ธฐ ๋ฐ”๋ž€๋‹ค.\n\n### ๋ช…๋ น: ์ œ์œก๋ณถ์Œ ํ•œ๊ทธ๋ฆ‡ํ•˜๊ณ ์š”, ๋น„๋น”๋ฐฅ ํ•œ๊ทธ๋ฆ‡ ์ถ”๊ฐ€ํ•ด์ฃผ์„ธ์š”. ### ์‘๋‹ต:\n',
  'output': '- ๋ถ„์„ ๊ฒฐ๊ณผ 0: ์Œ์‹๋ช…:์ œ์œก๋ณถ์Œ,์ˆ˜๋Ÿ‰:ํ•œ๊ทธ๋ฆ‡\n- ๋ถ„์„ ๊ฒฐ๊ณผ 1: ์Œ์‹๋ช…:๋น„๋น”๋ฐฅ,์ˆ˜๋Ÿ‰:ํ•œ๊ทธ๋ฆ‡'
},
{
  'input': '๋‹ค์Œ์€ ๋งค์žฅ์—์„œ ๊ณ ๊ฐ์ด ์Œ์‹์„ ์ฃผ๋ฌธํ•˜๋Š” ์ฃผ๋ฌธ ๋ฌธ์žฅ์ด๋‹ค. ์ด๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์Œ์‹๋ช…, ์˜ต์…˜๋ช…, ์ˆ˜๋Ÿ‰์„ ์ถ”์ถœํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์˜๋„๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•œ๋‹ค.\n๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์™„์„ฑํ•ด์ฃผ๊ธฐ ๋ฐ”๋ž€๋‹ค.\n\n### ๋ช…๋ น: ์‚ฌ์ฒœํƒ•์ˆ˜์œก ๊ณฑ๋ฐฐ๊ธฐ ์ฃผ๋ฌธํ•˜๊ณ ์š”, ์ƒค์›Œํฌ๋ฆผ์น˜ํ‚จ๋„ ํ•˜๋‚˜ ์ถ”๊ฐ€ํ•ด์ฃผ์„ธ์š”. ### ์‘๋‹ต:\n',
  'output': '- ๋ถ„์„ ๊ฒฐ๊ณผ 0: ์Œ์‹๋ช…:์‚ฌ์ฒœํƒ•์ˆ˜์œก,์˜ต์…˜:๊ณฑ๋ฐฐ๊ธฐ\n- ๋ถ„์„ ๊ฒฐ๊ณผ 1: ์Œ์‹๋ช…:์ƒค์›Œํฌ๋ฆผ์น˜ํ‚จ,์ˆ˜๋Ÿ‰:ํ•˜๋‚˜'
}

Note

I have another fine-tuned Language Model, jangmin/qlora-polyglot-ko-12.8b-food-order-understanding-32K, which is based on EleutherAI/polyglot-ko-12.8b. The dataset was generated using gpt-3.5-turbo-16k. I believe that the quality of a dataset generated by GPT-4 would be superior to that generated by GPT-3.5.

Downloads last month
0
Inference API
Unable to determine this modelโ€™s pipeline type. Check the docs .