SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the deepparse_address_mutations_comb_3 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
# Run inference
sentences = [
'8234 harvest bend lane laurel md 20707',
'8234 harvest bend lane laurel md',
'8702 wahl crse basement santee ca 92071',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7712 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7712 |
cosine_precision | 0.9601 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7712 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7712 |
dot_precision | 0.9601 |
dot_recall | 0.9974 |
dot_ap | 0.9865 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.6015 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6118 |
manhattan_precision | 0.96 |
manhattan_recall | 0.9974 |
manhattan_ap | 0.9865 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6764 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6764 |
euclidean_precision | 0.9601 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.6015 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6118 |
max_precision | 0.9601 |
max_recall | 0.9974 |
max_ap | 0.9866 |
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7711 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7711 |
cosine_precision | 0.96 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7711 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7711 |
dot_precision | 0.96 |
dot_recall | 0.9974 |
dot_ap | 0.9866 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.5101 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6372 |
manhattan_precision | 0.9599 |
manhattan_recall | 0.9975 |
manhattan_ap | 0.9866 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6766 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6766 |
euclidean_precision | 0.96 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.5101 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6372 |
max_precision | 0.96 |
max_recall | 0.9975 |
max_ap | 0.9866 |
Training Details
Training Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 4,517,388 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.21 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 13.54 tokens
- max: 22 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
12737 chesdin landng dr chesterfield va 23838
12737 chesdin landng dr chesterfield va
tensor(1, device='cuda:0')
6080 norh oak trafficway gladstone mo 64118
6080 norh oak trafficway gladstone 64118-4896
tensor(0, device='cuda:0')
242 pierce view cir wentzville mo 63385
242 pierce view cir wentzville LA 63385
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 968,012 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.24 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 13.45 tokens
- max: 27 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
1 vincent avenue essex maryland 21221
1 vincent avenue essedx MD 21221
tensor(1, device='cuda:0')
139 berg avenue hamilton tshp n.j. 08610
139 bcrg avenue hamilton tshp n.j. 08610
tensor(1, device='cuda:0')
714 havard rd houston texas 77336
714 havaplns plns houston texas 77336-3120
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | jarredparrett/deepparse_address_mutations_comb_3_max_ap |
---|---|---|---|---|
0.1133 | 500 | 0.0191 | 0.0131 | 0.8459 |
0.2267 | 1000 | 0.0112 | 0.0091 | 0.8887 |
0.3400 | 1500 | 0.0086 | 0.0067 | 0.9346 |
0.4533 | 2000 | 0.0064 | 0.0044 | 0.9604 |
0.5666 | 2500 | 0.0049 | 0.0037 | 0.9722 |
0.6800 | 3000 | 0.0042 | 0.0033 | 0.9761 |
0.7933 | 3500 | 0.0039 | 0.0032 | 0.9808 |
0.9066 | 4000 | 0.0037 | 0.0029 | 0.9825 |
1.0197 | 4500 | 0.0035 | 0.0028 | 0.9826 |
1.1330 | 5000 | 0.0033 | 0.0028 | 0.9836 |
1.2464 | 5500 | 0.0032 | 0.0027 | 0.9845 |
1.3597 | 6000 | 0.0031 | 0.0026 | 0.9853 |
1.4730 | 6500 | 0.003 | 0.0025 | 0.9857 |
1.5864 | 7000 | 0.003 | 0.0025 | 0.9859 |
1.6997 | 7500 | 0.0029 | 0.0025 | 0.9862 |
1.8130 | 8000 | 0.0028 | 0.0024 | 0.9864 |
1.9263 | 8500 | 0.0028 | 0.0024 | 0.9861 |
2.0394 | 9000 | 0.0028 | 0.0024 | 0.9864 |
2.1528 | 9500 | 0.0027 | 0.0024 | 0.9864 |
2.2661 | 10000 | 0.0027 | 0.0024 | 0.9865 |
2.3794 | 10500 | 0.0027 | 0.0023 | 0.9866 |
2.4927 | 11000 | 0.0026 | 0.0023 | 0.9866 |
2.6061 | 11500 | 0.0026 | 0.0023 | 0.9865 |
2.7194 | 12000 | 0.0026 | 0.0023 | 0.9865 |
2.8327 | 12500 | 0.0026 | 0.0023 | 0.9865 |
2.9461 | 13000 | 0.0026 | 0.0023 | 0.9866 |
2.9995 | 13236 | - | - | 0.9866 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3
Evaluation results
- Cosine Accuracy on jarredparrett/deepparse address mutations comb 3self-reported0.977
- Cosine Accuracy Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Cosine F1 on jarredparrett/deepparse address mutations comb 3self-reported0.978
- Cosine F1 Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Cosine Precision on jarredparrett/deepparse address mutations comb 3self-reported0.960
- Cosine Recall on jarredparrett/deepparse address mutations comb 3self-reported0.997
- Cosine Ap on jarredparrett/deepparse address mutations comb 3self-reported0.986
- Dot Accuracy on jarredparrett/deepparse address mutations comb 3self-reported0.977
- Dot Accuracy Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Dot F1 on jarredparrett/deepparse address mutations comb 3self-reported0.978