jarredparrett commited on
Commit
79c2367
·
verified ·
1 Parent(s): ef29eb0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:4517388
10
+ - loss:ContrastiveLoss
11
+ base_model: sentence-transformers/all-MiniLM-L6-v2
12
+ widget:
13
+ - source_sentence: 640 prt ashley floor 10 chula vista california 91913
14
+ sentences:
15
+ - 10523 howard parks apartment 8 cockseysville md 21030
16
+ - 640 prt ashley floor 10 East Gregory PW 91913
17
+ - trailwoods radial loveland oh 4514
18
+ - source_sentence: 9036 taylorsville road louisville ky 40299-1750
19
+ sentences:
20
+ - '16331 northwest gearin junctn floor num 6 apt # 4 f tigard or 97223-2808'
21
+ - 19 Brian Key walk voorhees township n. j. 08026
22
+ - 9036 taylorsville boulevard louisville 40299-175
23
+ - source_sentence: 11 simek ln middletown township n j 07758
24
+ sentences:
25
+ - 248 strawberry meadows place apt 1 springdale 72764-3759
26
+ - 11 Daniel Drive knl middletown township MT 41761
27
+ - 1135 s westgate ave Mileshaven ca 90049
28
+ - source_sentence: so west prospect street aloha or 97078
29
+ sentences:
30
+ - '1300 Brittney Club plains lot # b new york cty NY 10459'
31
+ - 527 Nicole Springs bypas rupert CA 05776
32
+ - so wdest prospect street aloha 97078
33
+ - source_sentence: 8234 harvest bend lane laurel md 20707
34
+ sentences:
35
+ - 8234 harvest bend lane laurel md
36
+ - 8702 wahl crse basement santee ca 92071
37
+ - 310 ella street Jamesborough ne 68310
38
+ datasets:
39
+ - jarredparrett/deepparse_address_mutations_comb_3
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ metrics:
43
+ - cosine_accuracy
44
+ - cosine_accuracy_threshold
45
+ - cosine_f1
46
+ - cosine_f1_threshold
47
+ - cosine_precision
48
+ - cosine_recall
49
+ - cosine_ap
50
+ - dot_accuracy
51
+ - dot_accuracy_threshold
52
+ - dot_f1
53
+ - dot_f1_threshold
54
+ - dot_precision
55
+ - dot_recall
56
+ - dot_ap
57
+ - manhattan_accuracy
58
+ - manhattan_accuracy_threshold
59
+ - manhattan_f1
60
+ - manhattan_f1_threshold
61
+ - manhattan_precision
62
+ - manhattan_recall
63
+ - manhattan_ap
64
+ - euclidean_accuracy
65
+ - euclidean_accuracy_threshold
66
+ - euclidean_f1
67
+ - euclidean_f1_threshold
68
+ - euclidean_precision
69
+ - euclidean_recall
70
+ - euclidean_ap
71
+ - max_accuracy
72
+ - max_accuracy_threshold
73
+ - max_f1
74
+ - max_f1_threshold
75
+ - max_precision
76
+ - max_recall
77
+ - max_ap
78
+ model-index:
79
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
80
+ results:
81
+ - task:
82
+ type: binary-classification
83
+ name: Binary Classification
84
+ dataset:
85
+ name: jarredparrett/deepparse address mutations comb 3
86
+ type: jarredparrett/deepparse_address_mutations_comb_3
87
+ metrics:
88
+ - type: cosine_accuracy
89
+ value: 0.9770643339132159
90
+ name: Cosine Accuracy
91
+ - type: cosine_accuracy_threshold
92
+ value: 0.7712496519088745
93
+ name: Cosine Accuracy Threshold
94
+ - type: cosine_f1
95
+ value: 0.9784053285401372
96
+ name: Cosine F1
97
+ - type: cosine_f1_threshold
98
+ value: 0.7712496519088745
99
+ name: Cosine F1 Threshold
100
+ - type: cosine_precision
101
+ value: 0.960100255219399
102
+ name: Cosine Precision
103
+ - type: cosine_recall
104
+ value: 0.9974219699718995
105
+ name: Cosine Recall
106
+ - type: cosine_ap
107
+ value: 0.9864940067102314
108
+ name: Cosine Ap
109
+ - type: dot_accuracy
110
+ value: 0.9770643339132159
111
+ name: Dot Accuracy
112
+ - type: dot_accuracy_threshold
113
+ value: 0.7712496519088745
114
+ name: Dot Accuracy Threshold
115
+ - type: dot_f1
116
+ value: 0.9784053285401372
117
+ name: Dot F1
118
+ - type: dot_f1_threshold
119
+ value: 0.7712496519088745
120
+ name: Dot F1 Threshold
121
+ - type: dot_precision
122
+ value: 0.960100255219399
123
+ name: Dot Precision
124
+ - type: dot_recall
125
+ value: 0.9974219699718995
126
+ name: Dot Recall
127
+ - type: dot_ap
128
+ value: 0.986499063941509
129
+ name: Dot Ap
130
+ - type: manhattan_accuracy
131
+ value: 0.9770395408321384
132
+ name: Manhattan Accuracy
133
+ - type: manhattan_accuracy_threshold
134
+ value: 10.601512908935547
135
+ name: Manhattan Accuracy Threshold
136
+ - type: manhattan_f1
137
+ value: 0.978383036334317
138
+ name: Manhattan F1
139
+ - type: manhattan_f1_threshold
140
+ value: 10.611783027648926
141
+ name: Manhattan F1 Threshold
142
+ - type: manhattan_precision
143
+ value: 0.9600334406666756
144
+ name: Manhattan Precision
145
+ - type: manhattan_recall
146
+ value: 0.9974477502721805
147
+ name: Manhattan Recall
148
+ - type: manhattan_ap
149
+ value: 0.9865423177462433
150
+ name: Manhattan Ap
151
+ - type: euclidean_accuracy
152
+ value: 0.9770643339132159
153
+ name: Euclidean Accuracy
154
+ - type: euclidean_accuracy_threshold
155
+ value: 0.6763879060745239
156
+ name: Euclidean Accuracy Threshold
157
+ - type: euclidean_f1
158
+ value: 0.9784053285401372
159
+ name: Euclidean F1
160
+ - type: euclidean_f1_threshold
161
+ value: 0.6763879060745239
162
+ name: Euclidean F1 Threshold
163
+ - type: euclidean_precision
164
+ value: 0.960100255219399
165
+ name: Euclidean Precision
166
+ - type: euclidean_recall
167
+ value: 0.9974219699718995
168
+ name: Euclidean Recall
169
+ - type: euclidean_ap
170
+ value: 0.9865515796011742
171
+ name: Euclidean Ap
172
+ - type: max_accuracy
173
+ value: 0.9770643339132159
174
+ name: Max Accuracy
175
+ - type: max_accuracy_threshold
176
+ value: 10.601512908935547
177
+ name: Max Accuracy Threshold
178
+ - type: max_f1
179
+ value: 0.9784053285401372
180
+ name: Max F1
181
+ - type: max_f1_threshold
182
+ value: 10.611783027648926
183
+ name: Max F1 Threshold
184
+ - type: max_precision
185
+ value: 0.960100255219399
186
+ name: Max Precision
187
+ - type: max_recall
188
+ value: 0.9974477502721805
189
+ name: Max Recall
190
+ - type: max_ap
191
+ value: 0.9865515796011742
192
+ name: Max Ap
193
+ - type: cosine_accuracy
194
+ value: 0.9770612347780813
195
+ name: Cosine Accuracy
196
+ - type: cosine_accuracy_threshold
197
+ value: 0.7710819244384766
198
+ name: Cosine Accuracy Threshold
199
+ - type: cosine_f1
200
+ value: 0.9783854448042815
201
+ name: Cosine F1
202
+ - type: cosine_f1_threshold
203
+ value: 0.7710819244384766
204
+ name: Cosine F1 Threshold
205
+ - type: cosine_precision
206
+ value: 0.9600473761629129
207
+ name: Cosine Precision
208
+ - type: cosine_recall
209
+ value: 0.9974377142267394
210
+ name: Cosine Recall
211
+ - type: cosine_ap
212
+ value: 0.9865423807819248
213
+ name: Cosine Ap
214
+ - type: dot_accuracy
215
+ value: 0.9770612347780813
216
+ name: Dot Accuracy
217
+ - type: dot_accuracy_threshold
218
+ value: 0.7710819244384766
219
+ name: Dot Accuracy Threshold
220
+ - type: dot_f1
221
+ value: 0.9783854448042815
222
+ name: Dot F1
223
+ - type: dot_f1_threshold
224
+ value: 0.7710819244384766
225
+ name: Dot F1 Threshold
226
+ - type: dot_precision
227
+ value: 0.9600473761629129
228
+ name: Dot Precision
229
+ - type: dot_recall
230
+ value: 0.9974377142267394
231
+ name: Dot Recall
232
+ - type: dot_ap
233
+ value: 0.9865613743522202
234
+ name: Dot Ap
235
+ - type: manhattan_accuracy
236
+ value: 0.9770395408321384
237
+ name: Manhattan Accuracy
238
+ - type: manhattan_accuracy_threshold
239
+ value: 10.510114669799805
240
+ name: Manhattan Accuracy Threshold
241
+ - type: manhattan_f1
242
+ value: 0.9783637843035726
243
+ name: Manhattan F1
244
+ - type: manhattan_f1_threshold
245
+ value: 10.637184143066406
246
+ name: Manhattan F1 Threshold
247
+ - type: manhattan_precision
248
+ value: 0.9599119169895931
249
+ name: Manhattan Precision
250
+ - type: manhattan_recall
251
+ value: 0.9975389354307954
252
+ name: Manhattan Recall
253
+ - type: manhattan_ap
254
+ value: 0.9865931109650937
255
+ name: Manhattan Ap
256
+ - type: euclidean_accuracy
257
+ value: 0.9770612347780813
258
+ name: Euclidean Accuracy
259
+ - type: euclidean_accuracy_threshold
260
+ value: 0.6766358613967896
261
+ name: Euclidean Accuracy Threshold
262
+ - type: euclidean_f1
263
+ value: 0.9783854448042815
264
+ name: Euclidean F1
265
+ - type: euclidean_f1_threshold
266
+ value: 0.6766358613967896
267
+ name: Euclidean F1 Threshold
268
+ - type: euclidean_precision
269
+ value: 0.9600473761629129
270
+ name: Euclidean Precision
271
+ - type: euclidean_recall
272
+ value: 0.9974377142267394
273
+ name: Euclidean Recall
274
+ - type: euclidean_ap
275
+ value: 0.9866061739963429
276
+ name: Euclidean Ap
277
+ - type: max_accuracy
278
+ value: 0.9770612347780813
279
+ name: Max Accuracy
280
+ - type: max_accuracy_threshold
281
+ value: 10.510114669799805
282
+ name: Max Accuracy Threshold
283
+ - type: max_f1
284
+ value: 0.9783854448042815
285
+ name: Max F1
286
+ - type: max_f1_threshold
287
+ value: 10.637184143066406
288
+ name: Max F1 Threshold
289
+ - type: max_precision
290
+ value: 0.9600473761629129
291
+ name: Max Precision
292
+ - type: max_recall
293
+ value: 0.9975389354307954
294
+ name: Max Recall
295
+ - type: max_ap
296
+ value: 0.9866061739963429
297
+ name: Max Ap
298
+ ---
299
+
300
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
301
+
302
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
303
+
304
+ ## Model Details
305
+
306
+ ### Model Description
307
+ - **Model Type:** Sentence Transformer
308
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
309
+ - **Maximum Sequence Length:** 256 tokens
310
+ - **Output Dimensionality:** 384 tokens
311
+ - **Similarity Function:** Cosine Similarity
312
+ - **Training Dataset:**
313
+ - [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3)
314
+ - **Language:** en
315
+ <!-- - **License:** Unknown -->
316
+
317
+ ### Model Sources
318
+
319
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
320
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
321
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
322
+
323
+ ### Full Model Architecture
324
+
325
+ ```
326
+ SentenceTransformer(
327
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
328
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
329
+ (2): Normalize()
330
+ )
331
+ ```
332
+
333
+ ## Usage
334
+
335
+ ### Direct Usage (Sentence Transformers)
336
+
337
+ First install the Sentence Transformers library:
338
+
339
+ ```bash
340
+ pip install -U sentence-transformers
341
+ ```
342
+
343
+ Then you can load this model and run inference.
344
+ ```python
345
+ from sentence_transformers import SentenceTransformer
346
+
347
+ # Download from the 🤗 Hub
348
+ model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
349
+ # Run inference
350
+ sentences = [
351
+ '8234 harvest bend lane laurel md 20707',
352
+ '8234 harvest bend lane laurel md',
353
+ '8702 wahl crse basement santee ca 92071',
354
+ ]
355
+ embeddings = model.encode(sentences)
356
+ print(embeddings.shape)
357
+ # [3, 384]
358
+
359
+ # Get the similarity scores for the embeddings
360
+ similarities = model.similarity(embeddings, embeddings)
361
+ print(similarities.shape)
362
+ # [3, 3]
363
+ ```
364
+
365
+ <!--
366
+ ### Direct Usage (Transformers)
367
+
368
+ <details><summary>Click to see the direct usage in Transformers</summary>
369
+
370
+ </details>
371
+ -->
372
+
373
+ <!--
374
+ ### Downstream Usage (Sentence Transformers)
375
+
376
+ You can finetune this model on your own dataset.
377
+
378
+ <details><summary>Click to expand</summary>
379
+
380
+ </details>
381
+ -->
382
+
383
+ <!--
384
+ ### Out-of-Scope Use
385
+
386
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
387
+ -->
388
+
389
+ ## Evaluation
390
+
391
+ ### Metrics
392
+
393
+ #### Binary Classification
394
+ * Dataset: `jarredparrett/deepparse_address_mutations_comb_3`
395
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
396
+
397
+ | Metric | Value |
398
+ |:-----------------------------|:-----------|
399
+ | cosine_accuracy | 0.9771 |
400
+ | cosine_accuracy_threshold | 0.7712 |
401
+ | cosine_f1 | 0.9784 |
402
+ | cosine_f1_threshold | 0.7712 |
403
+ | cosine_precision | 0.9601 |
404
+ | cosine_recall | 0.9974 |
405
+ | cosine_ap | 0.9865 |
406
+ | dot_accuracy | 0.9771 |
407
+ | dot_accuracy_threshold | 0.7712 |
408
+ | dot_f1 | 0.9784 |
409
+ | dot_f1_threshold | 0.7712 |
410
+ | dot_precision | 0.9601 |
411
+ | dot_recall | 0.9974 |
412
+ | dot_ap | 0.9865 |
413
+ | manhattan_accuracy | 0.977 |
414
+ | manhattan_accuracy_threshold | 10.6015 |
415
+ | manhattan_f1 | 0.9784 |
416
+ | manhattan_f1_threshold | 10.6118 |
417
+ | manhattan_precision | 0.96 |
418
+ | manhattan_recall | 0.9974 |
419
+ | manhattan_ap | 0.9865 |
420
+ | euclidean_accuracy | 0.9771 |
421
+ | euclidean_accuracy_threshold | 0.6764 |
422
+ | euclidean_f1 | 0.9784 |
423
+ | euclidean_f1_threshold | 0.6764 |
424
+ | euclidean_precision | 0.9601 |
425
+ | euclidean_recall | 0.9974 |
426
+ | euclidean_ap | 0.9866 |
427
+ | max_accuracy | 0.9771 |
428
+ | max_accuracy_threshold | 10.6015 |
429
+ | max_f1 | 0.9784 |
430
+ | max_f1_threshold | 10.6118 |
431
+ | max_precision | 0.9601 |
432
+ | max_recall | 0.9974 |
433
+ | **max_ap** | **0.9866** |
434
+
435
+ #### Binary Classification
436
+ * Dataset: `jarredparrett/deepparse_address_mutations_comb_3`
437
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
438
+
439
+ | Metric | Value |
440
+ |:-----------------------------|:-----------|
441
+ | cosine_accuracy | 0.9771 |
442
+ | cosine_accuracy_threshold | 0.7711 |
443
+ | cosine_f1 | 0.9784 |
444
+ | cosine_f1_threshold | 0.7711 |
445
+ | cosine_precision | 0.96 |
446
+ | cosine_recall | 0.9974 |
447
+ | cosine_ap | 0.9865 |
448
+ | dot_accuracy | 0.9771 |
449
+ | dot_accuracy_threshold | 0.7711 |
450
+ | dot_f1 | 0.9784 |
451
+ | dot_f1_threshold | 0.7711 |
452
+ | dot_precision | 0.96 |
453
+ | dot_recall | 0.9974 |
454
+ | dot_ap | 0.9866 |
455
+ | manhattan_accuracy | 0.977 |
456
+ | manhattan_accuracy_threshold | 10.5101 |
457
+ | manhattan_f1 | 0.9784 |
458
+ | manhattan_f1_threshold | 10.6372 |
459
+ | manhattan_precision | 0.9599 |
460
+ | manhattan_recall | 0.9975 |
461
+ | manhattan_ap | 0.9866 |
462
+ | euclidean_accuracy | 0.9771 |
463
+ | euclidean_accuracy_threshold | 0.6766 |
464
+ | euclidean_f1 | 0.9784 |
465
+ | euclidean_f1_threshold | 0.6766 |
466
+ | euclidean_precision | 0.96 |
467
+ | euclidean_recall | 0.9974 |
468
+ | euclidean_ap | 0.9866 |
469
+ | max_accuracy | 0.9771 |
470
+ | max_accuracy_threshold | 10.5101 |
471
+ | max_f1 | 0.9784 |
472
+ | max_f1_threshold | 10.6372 |
473
+ | max_precision | 0.96 |
474
+ | max_recall | 0.9975 |
475
+ | **max_ap** | **0.9866** |
476
+
477
+ <!--
478
+ ## Bias, Risks and Limitations
479
+
480
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
481
+ -->
482
+
483
+ <!--
484
+ ### Recommendations
485
+
486
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
487
+ -->
488
+
489
+ ## Training Details
490
+
491
+ ### Training Dataset
492
+
493
+ #### deepparse_address_mutations_comb_3
494
+
495
+ * Dataset: [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) at [7162fdc](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3/tree/7162fdce4cfcb8114dc8f64d0631dc7a48c5ab7a)
496
+ * Size: 4,517,388 training samples
497
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
498
+ * Approximate statistics based on the first 1000 samples:
499
+ | | label | sentence1 | sentence2 |
500
+ |:--------|:-------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
501
+ | type | torch.Tensor | string | string |
502
+ | details | <ul><li></li></ul> | <ul><li>min: 8 tokens</li><li>mean: 13.21 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.54 tokens</li><li>max: 22 tokens</li></ul> |
503
+ * Samples:
504
+ | label | sentence1 | sentence2 |
505
+ |:----------------------------------------|:-----------------------------------------------------------|:-----------------------------------------------------------|
506
+ | <code>tensor(1, device='cuda:0')</code> | <code>12737 chesdin landng dr chesterfield va 23838</code> | <code>12737 chesdin landng dr chesterfield va</code> |
507
+ | <code>tensor(1, device='cuda:0')</code> | <code>6080 norh oak trafficway gladstone mo 64118</code> | <code>6080 norh oak trafficway gladstone 64118-4896</code> |
508
+ | <code>tensor(0, device='cuda:0')</code> | <code>242 pierce view cir wentzville mo 63385</code> | <code>242 pierce view cir wentzville LA 63385</code> |
509
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
510
+ ```json
511
+ {
512
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
513
+ "margin": 0.5,
514
+ "size_average": true
515
+ }
516
+ ```
517
+
518
+ ### Evaluation Dataset
519
+
520
+ #### deepparse_address_mutations_comb_3
521
+
522
+ * Dataset: [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) at [7162fdc](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3/tree/7162fdce4cfcb8114dc8f64d0631dc7a48c5ab7a)
523
+ * Size: 968,012 evaluation samples
524
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
525
+ * Approximate statistics based on the first 1000 samples:
526
+ | | label | sentence1 | sentence2 |
527
+ |:--------|:-------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
528
+ | type | torch.Tensor | string | string |
529
+ | details | <ul><li></li></ul> | <ul><li>min: 8 tokens</li><li>mean: 13.24 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 13.45 tokens</li><li>max: 27 tokens</li></ul> |
530
+ * Samples:
531
+ | label | sentence1 | sentence2 |
532
+ |:----------------------------------------|:------------------------------------------------------|:--------------------------------------------------------|
533
+ | <code>tensor(1, device='cuda:0')</code> | <code>1 vincent avenue essex maryland 21221</code> | <code>1 vincent avenue essedx MD 21221</code> |
534
+ | <code>tensor(1, device='cuda:0')</code> | <code>139 berg avenue hamilton tshp n.j. 08610</code> | <code>139 bcrg avenue hamilton tshp n.j. 08610</code> |
535
+ | <code>tensor(1, device='cuda:0')</code> | <code>714 havard rd houston texas 77336</code> | <code>714 havaplns plns houston texas 77336-3120</code> |
536
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
537
+ ```json
538
+ {
539
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
540
+ "margin": 0.5,
541
+ "size_average": true
542
+ }
543
+ ```
544
+
545
+ ### Training Hyperparameters
546
+ #### Non-Default Hyperparameters
547
+
548
+ - `eval_strategy`: steps
549
+ - `per_device_train_batch_size`: 1024
550
+ - `per_device_eval_batch_size`: 1024
551
+ - `learning_rate`: 2e-05
552
+ - `warmup_ratio`: 0.1
553
+ - `fp16`: True
554
+ - `batch_sampler`: no_duplicates
555
+
556
+ #### All Hyperparameters
557
+ <details><summary>Click to expand</summary>
558
+
559
+ - `overwrite_output_dir`: False
560
+ - `do_predict`: False
561
+ - `eval_strategy`: steps
562
+ - `prediction_loss_only`: True
563
+ - `per_device_train_batch_size`: 1024
564
+ - `per_device_eval_batch_size`: 1024
565
+ - `per_gpu_train_batch_size`: None
566
+ - `per_gpu_eval_batch_size`: None
567
+ - `gradient_accumulation_steps`: 1
568
+ - `eval_accumulation_steps`: None
569
+ - `torch_empty_cache_steps`: None
570
+ - `learning_rate`: 2e-05
571
+ - `weight_decay`: 0.0
572
+ - `adam_beta1`: 0.9
573
+ - `adam_beta2`: 0.999
574
+ - `adam_epsilon`: 1e-08
575
+ - `max_grad_norm`: 1.0
576
+ - `num_train_epochs`: 3
577
+ - `max_steps`: -1
578
+ - `lr_scheduler_type`: linear
579
+ - `lr_scheduler_kwargs`: {}
580
+ - `warmup_ratio`: 0.1
581
+ - `warmup_steps`: 0
582
+ - `log_level`: passive
583
+ - `log_level_replica`: warning
584
+ - `log_on_each_node`: True
585
+ - `logging_nan_inf_filter`: True
586
+ - `save_safetensors`: True
587
+ - `save_on_each_node`: False
588
+ - `save_only_model`: False
589
+ - `restore_callback_states_from_checkpoint`: False
590
+ - `no_cuda`: False
591
+ - `use_cpu`: False
592
+ - `use_mps_device`: False
593
+ - `seed`: 42
594
+ - `data_seed`: None
595
+ - `jit_mode_eval`: False
596
+ - `use_ipex`: False
597
+ - `bf16`: False
598
+ - `fp16`: True
599
+ - `fp16_opt_level`: O1
600
+ - `half_precision_backend`: auto
601
+ - `bf16_full_eval`: False
602
+ - `fp16_full_eval`: False
603
+ - `tf32`: None
604
+ - `local_rank`: 0
605
+ - `ddp_backend`: None
606
+ - `tpu_num_cores`: None
607
+ - `tpu_metrics_debug`: False
608
+ - `debug`: []
609
+ - `dataloader_drop_last`: False
610
+ - `dataloader_num_workers`: 0
611
+ - `dataloader_prefetch_factor`: None
612
+ - `past_index`: -1
613
+ - `disable_tqdm`: False
614
+ - `remove_unused_columns`: True
615
+ - `label_names`: None
616
+ - `load_best_model_at_end`: False
617
+ - `ignore_data_skip`: False
618
+ - `fsdp`: []
619
+ - `fsdp_min_num_params`: 0
620
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
621
+ - `fsdp_transformer_layer_cls_to_wrap`: None
622
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
623
+ - `deepspeed`: None
624
+ - `label_smoothing_factor`: 0.0
625
+ - `optim`: adamw_torch
626
+ - `optim_args`: None
627
+ - `adafactor`: False
628
+ - `group_by_length`: False
629
+ - `length_column_name`: length
630
+ - `ddp_find_unused_parameters`: None
631
+ - `ddp_bucket_cap_mb`: None
632
+ - `ddp_broadcast_buffers`: False
633
+ - `dataloader_pin_memory`: True
634
+ - `dataloader_persistent_workers`: False
635
+ - `skip_memory_metrics`: True
636
+ - `use_legacy_prediction_loop`: False
637
+ - `push_to_hub`: False
638
+ - `resume_from_checkpoint`: None
639
+ - `hub_model_id`: None
640
+ - `hub_strategy`: every_save
641
+ - `hub_private_repo`: False
642
+ - `hub_always_push`: False
643
+ - `gradient_checkpointing`: False
644
+ - `gradient_checkpointing_kwargs`: None
645
+ - `include_inputs_for_metrics`: False
646
+ - `eval_do_concat_batches`: True
647
+ - `fp16_backend`: auto
648
+ - `push_to_hub_model_id`: None
649
+ - `push_to_hub_organization`: None
650
+ - `mp_parameters`:
651
+ - `auto_find_batch_size`: False
652
+ - `full_determinism`: False
653
+ - `torchdynamo`: None
654
+ - `ray_scope`: last
655
+ - `ddp_timeout`: 1800
656
+ - `torch_compile`: False
657
+ - `torch_compile_backend`: None
658
+ - `torch_compile_mode`: None
659
+ - `dispatch_batches`: None
660
+ - `split_batches`: None
661
+ - `include_tokens_per_second`: False
662
+ - `include_num_input_tokens_seen`: False
663
+ - `neftune_noise_alpha`: None
664
+ - `optim_target_modules`: None
665
+ - `batch_eval_metrics`: False
666
+ - `eval_on_start`: False
667
+ - `use_liger_kernel`: False
668
+ - `eval_use_gather_object`: False
669
+ - `batch_sampler`: no_duplicates
670
+ - `multi_dataset_batch_sampler`: proportional
671
+
672
+ </details>
673
+
674
+ ### Training Logs
675
+ | Epoch | Step | Training Loss | loss | jarredparrett/deepparse_address_mutations_comb_3_max_ap |
676
+ |:------:|:-----:|:-------------:|:------:|:-------------------------------------------------------:|
677
+ | 0.1133 | 500 | 0.0191 | 0.0131 | 0.8459 |
678
+ | 0.2267 | 1000 | 0.0112 | 0.0091 | 0.8887 |
679
+ | 0.3400 | 1500 | 0.0086 | 0.0067 | 0.9346 |
680
+ | 0.4533 | 2000 | 0.0064 | 0.0044 | 0.9604 |
681
+ | 0.5666 | 2500 | 0.0049 | 0.0037 | 0.9722 |
682
+ | 0.6800 | 3000 | 0.0042 | 0.0033 | 0.9761 |
683
+ | 0.7933 | 3500 | 0.0039 | 0.0032 | 0.9808 |
684
+ | 0.9066 | 4000 | 0.0037 | 0.0029 | 0.9825 |
685
+ | 1.0197 | 4500 | 0.0035 | 0.0028 | 0.9826 |
686
+ | 1.1330 | 5000 | 0.0033 | 0.0028 | 0.9836 |
687
+ | 1.2464 | 5500 | 0.0032 | 0.0027 | 0.9845 |
688
+ | 1.3597 | 6000 | 0.0031 | 0.0026 | 0.9853 |
689
+ | 1.4730 | 6500 | 0.003 | 0.0025 | 0.9857 |
690
+ | 1.5864 | 7000 | 0.003 | 0.0025 | 0.9859 |
691
+ | 1.6997 | 7500 | 0.0029 | 0.0025 | 0.9862 |
692
+ | 1.8130 | 8000 | 0.0028 | 0.0024 | 0.9864 |
693
+ | 1.9263 | 8500 | 0.0028 | 0.0024 | 0.9861 |
694
+ | 2.0394 | 9000 | 0.0028 | 0.0024 | 0.9864 |
695
+ | 2.1528 | 9500 | 0.0027 | 0.0024 | 0.9864 |
696
+ | 2.2661 | 10000 | 0.0027 | 0.0024 | 0.9865 |
697
+ | 2.3794 | 10500 | 0.0027 | 0.0023 | 0.9866 |
698
+ | 2.4927 | 11000 | 0.0026 | 0.0023 | 0.9866 |
699
+ | 2.6061 | 11500 | 0.0026 | 0.0023 | 0.9865 |
700
+ | 2.7194 | 12000 | 0.0026 | 0.0023 | 0.9865 |
701
+ | 2.8327 | 12500 | 0.0026 | 0.0023 | 0.9865 |
702
+ | 2.9461 | 13000 | 0.0026 | 0.0023 | 0.9866 |
703
+ | 2.9995 | 13236 | - | - | 0.9866 |
704
+
705
+
706
+ ### Framework Versions
707
+ - Python: 3.10.12
708
+ - Sentence Transformers: 3.1.1
709
+ - Transformers: 4.45.2
710
+ - PyTorch: 2.5.1+cu121
711
+ - Accelerate: 1.1.1
712
+ - Datasets: 3.2.0
713
+ - Tokenizers: 0.20.3
714
+
715
+ ## Citation
716
+
717
+ ### BibTeX
718
+
719
+ #### Sentence Transformers
720
+ ```bibtex
721
+ @inproceedings{reimers-2019-sentence-bert,
722
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
723
+ author = "Reimers, Nils and Gurevych, Iryna",
724
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
725
+ month = "11",
726
+ year = "2019",
727
+ publisher = "Association for Computational Linguistics",
728
+ url = "https://arxiv.org/abs/1908.10084",
729
+ }
730
+ ```
731
+
732
+ #### ContrastiveLoss
733
+ ```bibtex
734
+ @inproceedings{hadsell2006dimensionality,
735
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
736
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
737
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
738
+ year={2006},
739
+ volume={2},
740
+ number={},
741
+ pages={1735-1742},
742
+ doi={10.1109/CVPR.2006.100}
743
+ }
744
+ ```
745
+
746
+ <!--
747
+ ## Glossary
748
+
749
+ *Clearly define terms in order to be accessible across audiences.*
750
+ -->
751
+
752
+ <!--
753
+ ## Model Card Authors
754
+
755
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
756
+ -->
757
+
758
+ <!--
759
+ ## Model Card Contact
760
+
761
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
762
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8300fe463d676c0d9cf02c2c9b3712fa27afe3339d818376fedf50559e12dcfa
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff