medicine-ner / README.md
jarvisx17's picture
update model card README.md
c9b8b32
|
raw
history blame
3.67 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - jxner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: medicine-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: jxner
          type: jxner
          config: wnut_17
          split: test
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0
          - name: Recall
            type: recall
            value: 0
          - name: F1
            type: f1
            value: 0
          - name: Accuracy
            type: accuracy
            value: 0.9

medicine-ner

This model is a fine-tuned version of distilbert-base-uncased on the jxner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5562
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 1 1.7398 0.0370 0.125 0.0571 0.65
No log 2.0 2 1.5750 0.0 0.0 0.0 0.86
No log 3.0 3 1.4146 0.0 0.0 0.0 0.88
No log 4.0 4 1.2611 0.0 0.0 0.0 0.9
No log 5.0 5 1.1173 0.0 0.0 0.0 0.9
No log 6.0 6 0.9869 0.0 0.0 0.0 0.9
No log 7.0 7 0.8737 0.0 0.0 0.0 0.9
No log 8.0 8 0.7804 0.0 0.0 0.0 0.9
No log 9.0 9 0.7074 0.0 0.0 0.0 0.9
No log 10.0 10 0.6545 0.0 0.0 0.0 0.9
No log 11.0 11 0.6181 0.0 0.0 0.0 0.9
No log 12.0 12 0.5938 0.0 0.0 0.0 0.9
No log 13.0 13 0.5780 0.0 0.0 0.0 0.9
No log 14.0 14 0.5682 0.0 0.0 0.0 0.9
No log 15.0 15 0.5623 0.0 0.0 0.0 0.9
No log 16.0 16 0.5589 0.0 0.0 0.0 0.9
No log 17.0 17 0.5571 0.0 0.0 0.0 0.9
No log 18.0 18 0.5563 0.0 0.0 0.0 0.9
No log 19.0 19 0.5562 0.0 0.0 0.0 0.9
No log 20.0 20 0.5562 0.0 0.0 0.0 0.9

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2