metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- jxner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: medicine-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: jxner
type: jxner
config: wnut_17
split: test
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0
- name: Recall
type: recall
value: 0
- name: F1
type: f1
value: 0
- name: Accuracy
type: accuracy
value: 0.9
medicine-ner
This model is a fine-tuned version of distilbert-base-uncased on the jxner dataset. It achieves the following results on the evaluation set:
- Loss: 0.5562
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 1.7398 | 0.0370 | 0.125 | 0.0571 | 0.65 |
No log | 2.0 | 2 | 1.5750 | 0.0 | 0.0 | 0.0 | 0.86 |
No log | 3.0 | 3 | 1.4146 | 0.0 | 0.0 | 0.0 | 0.88 |
No log | 4.0 | 4 | 1.2611 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 5.0 | 5 | 1.1173 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 6.0 | 6 | 0.9869 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 7.0 | 7 | 0.8737 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 8.0 | 8 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 9.0 | 9 | 0.7074 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 10.0 | 10 | 0.6545 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 11.0 | 11 | 0.6181 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 12.0 | 12 | 0.5938 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 13.0 | 13 | 0.5780 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 14.0 | 14 | 0.5682 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 15.0 | 15 | 0.5623 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 16.0 | 16 | 0.5589 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 17.0 | 17 | 0.5571 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 18.0 | 18 | 0.5563 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 19.0 | 19 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 |
No log | 20.0 | 20 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 |
Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2