metadata
license: cc-by-nc-4.0
library_name: diffusers
base_model: PixArt-alpha/PixArt-XL-2-1024-MS
tags:
- lora
- text-to-image
inference: false
⚡ FlashDiffusion: FlashPixart ⚡
Flash Diffusion is a diffusion distillation method proposed in ADD ARXIV by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin. This model is a 66.5M LoRA distilled version of Pixart-α model that is able to generate 1024x1024 images in 4 steps. See our live demo.
How to use?
The model can be used using the StableDiffusionPipeline
from diffusers
library directly. It can allow reducing the number of required sampling steps to 2-4 steps.
import torch
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
from peft import PeftModel
# Load LoRA
transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="transformer",
torch_dtype=torch.float16
)
transformer = PeftModel.from_pretrained(
transformer,
"jasperai/flash-pixart"
)
# Pipeline
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
# Scheduler
pipe.scheduler = LCMScheduler.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="scheduler",
timestep_spacing="trailing",
)
pipe.to("cuda")
prompt = "A raccoon reading a book in a lush forest."
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
Training Details
The model was trained for 40k iterations on 4 H100 GPUs (representing approximately 188 hours of training). Please refer to the paper for further parameters details.
Metrics on COCO 2014 validation (Table 4)
- FID-10k: 29.30 (4 NFE)
- CLIP Score: 0.303 (4 NFE)
License
This model is released under the the Creative Commons BY-NC license.