|
--- |
|
license: other |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: mit-b2-VF2-finetuned-memes |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8307573415765069 |
|
- name: Precision |
|
type: precision |
|
value: 0.8272186656187493 |
|
- name: Recall |
|
type: recall |
|
value: 0.8307573415765069 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8286939083150942 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mit-b2-VF2-finetuned-memes |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6547 |
|
- Accuracy: 0.8308 |
|
- Precision: 0.8272 |
|
- Recall: 0.8308 |
|
- F1: 0.8287 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00012 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.3077 | 0.99 | 20 | 1.1683 | 0.5549 | 0.5621 | 0.5549 | 0.5286 | |
|
| 0.9359 | 1.99 | 40 | 0.8573 | 0.6731 | 0.6807 | 0.6731 | 0.6535 | |
|
| 0.7219 | 2.99 | 60 | 0.7106 | 0.7272 | 0.7359 | 0.7272 | 0.7246 | |
|
| 0.6013 | 3.99 | 80 | 0.6445 | 0.7550 | 0.7686 | 0.7550 | 0.7558 | |
|
| 0.5243 | 4.99 | 100 | 0.6717 | 0.7573 | 0.8077 | 0.7573 | 0.7584 | |
|
| 0.4409 | 5.99 | 120 | 0.5315 | 0.8068 | 0.8027 | 0.8068 | 0.7989 | |
|
| 0.3325 | 6.99 | 140 | 0.5159 | 0.8230 | 0.8236 | 0.8230 | 0.8158 | |
|
| 0.2719 | 7.99 | 160 | 0.5250 | 0.8215 | 0.8227 | 0.8215 | 0.8202 | |
|
| 0.242 | 8.99 | 180 | 0.5087 | 0.8277 | 0.8260 | 0.8277 | 0.8268 | |
|
| 0.2247 | 9.99 | 200 | 0.5313 | 0.8215 | 0.8275 | 0.8215 | 0.8218 | |
|
| 0.1955 | 10.99 | 220 | 0.6167 | 0.8130 | 0.8062 | 0.8130 | 0.8073 | |
|
| 0.1567 | 11.99 | 240 | 0.5859 | 0.8168 | 0.8185 | 0.8168 | 0.8173 | |
|
| 0.1479 | 12.99 | 260 | 0.5938 | 0.8215 | 0.8169 | 0.8215 | 0.8178 | |
|
| 0.1241 | 13.99 | 280 | 0.6187 | 0.8261 | 0.8234 | 0.8261 | 0.8239 | |
|
| 0.1114 | 14.99 | 300 | 0.6419 | 0.8261 | 0.8351 | 0.8261 | 0.8293 | |
|
| 0.1022 | 15.99 | 320 | 0.6322 | 0.8323 | 0.8284 | 0.8323 | 0.8294 | |
|
| 0.0941 | 16.99 | 340 | 0.6595 | 0.8269 | 0.8266 | 0.8269 | 0.8263 | |
|
| 0.0935 | 17.99 | 360 | 0.6674 | 0.8269 | 0.8218 | 0.8269 | 0.8237 | |
|
| 0.089 | 18.99 | 380 | 0.6533 | 0.8253 | 0.8222 | 0.8253 | 0.8235 | |
|
| 0.0794 | 19.99 | 400 | 0.6547 | 0.8308 | 0.8272 | 0.8308 | 0.8287 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0.dev0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.6.1.dev0 |
|
- Tokenizers 0.13.1 |
|
|