paul
Update metadata with huggingface_hub
80a7af2
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-20epochs-finetuned-memes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.847758887171561
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          type: custom
          name: custom
          split: test
        metrics:
          - type: f1
            value: 0.8504084378729573
            name: F1
          - type: precision
            value: 0.8519647060733512
            name: Precision
          - type: recall
            value: 0.8523956723338485
            name: Recall

swin-base-patch4-window7-224-20epochs-finetuned-memes

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7090
  • Accuracy: 0.8478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0238 0.99 40 0.9636 0.6445
0.777 1.99 80 0.6591 0.7666
0.4763 2.99 120 0.5381 0.8130
0.3215 3.99 160 0.5244 0.8253
0.2179 4.99 200 0.5123 0.8238
0.1868 5.99 240 0.5052 0.8308
0.154 6.99 280 0.5444 0.8338
0.1166 7.99 320 0.6318 0.8238
0.1099 8.99 360 0.5656 0.8338
0.0925 9.99 400 0.6057 0.8338
0.0779 10.99 440 0.5942 0.8393
0.0629 11.99 480 0.6112 0.8400
0.0742 12.99 520 0.6588 0.8331
0.0752 13.99 560 0.6143 0.8408
0.0577 14.99 600 0.6450 0.8516
0.0589 15.99 640 0.6787 0.8400
0.0555 16.99 680 0.6641 0.8454
0.052 17.99 720 0.7213 0.8524
0.0589 18.99 760 0.6917 0.8470
0.0506 19.99 800 0.7090 0.8478

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1