jaycentg's picture
vmw-xlm-asym-lr-3e-5
3565ba2 verified
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: vmw-xlm-asym-lr-3e-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vmw-xlm-asym-lr-3e-5
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0812
- F1-micro: 0.2355
- F1-macro: 0.0673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-micro | F1-macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.0839 | 1.0 | 78 | 0.0815 | 0.2427 | 0.0888 |
| 0.0817 | 2.0 | 156 | 0.0813 | 0.2427 | 0.0888 |
| 0.0823 | 3.0 | 234 | 0.0812 | 0.2333 | 0.0509 |
| 0.0819 | 4.0 | 312 | 0.0812 | 0.2355 | 0.0673 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0