|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- cpo |
|
- generated_from_trainer |
|
- trl |
|
- cpo |
|
- generated_from_trainer |
|
datasets: |
|
- princeton-nlp/llama3-ultrafeedback |
|
model-index: |
|
- name: llama3.1-cpo_j-full-0912 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3.1-cpo_j-full-0912 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4395 |
|
- Rewards/chosen: -16.1609 |
|
- Rewards/rejected: -16.9344 |
|
- Rewards/accuracies: 0.6326 |
|
- Rewards/margins: 0.7735 |
|
- Logps/rejected: -169.3439 |
|
- Logps/chosen: -161.6093 |
|
- Logits/rejected: -0.3578 |
|
- Logits/chosen: -0.3883 |
|
- Nll Loss: 0.2841 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| |
|
| 1.7848 | 0.2311 | 100 | 1.6452 | -15.3752 | -15.7662 | 0.5804 | 0.3910 | -157.6625 | -153.7521 | -0.3516 | -0.3794 | 0.2719 | |
|
| 1.5276 | 0.4623 | 200 | 1.5229 | -15.8100 | -16.4430 | 0.6043 | 0.6331 | -164.4303 | -158.0997 | -0.3983 | -0.4237 | 0.2748 | |
|
| 1.4811 | 0.6934 | 300 | 1.4640 | -16.0706 | -16.8001 | 0.6130 | 0.7296 | -168.0013 | -160.7057 | -0.4069 | -0.4339 | 0.2804 | |
|
| 1.4642 | 0.9246 | 400 | 1.4429 | -16.1577 | -16.9120 | 0.6304 | 0.7544 | -169.1204 | -161.5765 | -0.3509 | -0.3812 | 0.2845 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.1 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|