File size: 15,585 Bytes
fb97051
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc523ce40d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc523ecae80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686988741668100144, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk8UKv6eyKr/6X8I+PxuxvS0Uiz/PLPy9o4LsPkbZq7/U7Ly/+hqWv4A9PD8oepS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38065195 -0.03189621  0.43825924]\n [ 0.38065195 -0.03189621  0.43825924]\n [ 0.38065195 -0.03189621  0.43825924]\n [ 0.38065195 -0.03189621  0.43825924]]", "desired_goal": "[[-0.54207724 -0.6667885   0.3796385 ]\n [-0.08647775  1.0865532  -0.12313234]\n [ 0.46193418 -1.3425682  -1.4759774 ]\n [-1.1726983   0.7353134  -0.28999448]]", "observation": "[[ 0.38065195 -0.03189621  0.43825924  0.01706387 -0.008546    0.01670259]\n [ 0.38065195 -0.03189621  0.43825924  0.01706387 -0.008546    0.01670259]\n [ 0.38065195 -0.03189621  0.43825924  0.01706387 -0.008546    0.01670259]\n [ 0.38065195 -0.03189621  0.43825924  0.01706387 -0.008546    0.01670259]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0K2PRp3oL06Drw94aUvPeOlVL1ikHw+4BRMvQpqJzwAqXE93hcSPrF9DT0AI0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.08899333 -0.07835217  0.09182401]\n [ 0.0428828  -0.05191601  0.24664453]\n [-0.0498246   0.01021815  0.05899906]\n [ 0.14266917  0.0345437   0.19544601]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaxFRTN7QEMCUhpRSlIwBbJRLMowBdJRHQKleVzySV4Z1fZQoaAZoCWgPQwgEyTuHMkQTwJSGlFKUaBVLMmgWR0CpXg4ecQRPdX2UKGgGaAloD0MIMBAEyNCxC8CUhpRSlGgVSzJoFkdAqV3RcPe54HV9lChoBmgJaA9DCIaOHVTi+hHAlIaUUpRoFUsyaBZHQKldkoy9EkV1fZQoaAZoCWgPQwjon+BiRY0HwJSGlFKUaBVLMmgWR0CpYDqioKlYdX2UKGgGaAloD0MItYmT+x1qB8CUhpRSlGgVSzJoFkdAqV/yn+AEuHV9lChoBmgJaA9DCEpdMo6RjAjAlIaUUpRoFUsyaBZHQKlftnscABF1fZQoaAZoCWgPQwglea7vwwH9v5SGlFKUaBVLMmgWR0CpX3f5DZ13dX2UKGgGaAloD0MIn+i68INDG8CUhpRSlGgVSzJoFkdAqWH/dyksSXV9lChoBmgJaA9DCN5UpMLYggLAlIaUUpRoFUsyaBZHQKlhtPRArx11fZQoaAZoCWgPQwizeRwG89cTwJSGlFKUaBVLMmgWR0CpYXeGfwqidX2UKGgGaAloD0MIRDUlWYdzE8CUhpRSlGgVSzJoFkdAqWE4H9m6G3V9lChoBmgJaA9DCJtWCoFcQgvAlIaUUpRoFUsyaBZHQKljBtVrAQB1fZQoaAZoCWgPQwiDpbqAlwkQwJSGlFKUaBVLMmgWR0CpYrz1kDp1dX2UKGgGaAloD0MIyaoINxnVGMCUhpRSlGgVSzJoFkdAqWJ/e7+T/3V9lChoBmgJaA9DCIU/w5s1WA3AlIaUUpRoFUsyaBZHQKliQB3A2yd1fZQoaAZoCWgPQwgJqdvZV94RwJSGlFKUaBVLMmgWR0CpZBYFzMibdX2UKGgGaAloD0MIY+/FF+1RDcCUhpRSlGgVSzJoFkdAqWPLsD4gzXV9lChoBmgJaA9DCE0UIXU7GwXAlIaUUpRoFUsyaBZHQKljjkzXSSh1fZQoaAZoCWgPQwhHrwYoDVUBwJSGlFKUaBVLMmgWR0CpY07lijL0dX2UKGgGaAloD0MIeEMaFTj5E8CUhpRSlGgVSzJoFkdAqWUiAjIJaHV9lChoBmgJaA9DCLEaS1gbAwzAlIaUUpRoFUsyaBZHQKlk19+gDih1fZQoaAZoCWgPQwgIW+z2WYUGwJSGlFKUaBVLMmgWR0CpZJpvo/zKdX2UKGgGaAloD0MIUMJM27+SEcCUhpRSlGgVSzJoFkdAqWRbDEWIoHV9lChoBmgJaA9DCOksswjFlvy/lIaUUpRoFUsyaBZHQKlmU90zTF51fZQoaAZoCWgPQwiV1AloIowLwJSGlFKUaBVLMmgWR0CpZgqBun/DdX2UKGgGaAloD0MIg2vu6H85GcCUhpRSlGgVSzJoFkdAqWXOJSBK+XV9lChoBmgJaA9DCKq7sgsG1xLAlIaUUpRoFUsyaBZHQKlljqW1MM91fZQoaAZoCWgPQwiZR/5g4BkPwJSGlFKUaBVLMmgWR0CpZ3EAo5PudX2UKGgGaAloD0MIVix+U1gpAsCUhpRSlGgVSzJoFkdAqWcnek56t3V9lChoBmgJaA9DCJAWZwxzchPAlIaUUpRoFUsyaBZHQKlm6w+t8u11fZQoaAZoCWgPQwgYIxKFlqUXwJSGlFKUaBVLMmgWR0CpZqxgAp8XdX2UKGgGaAloD0MIe9egL73dB8CUhpRSlGgVSzJoFkdAqWiC9K28ZnV9lChoBmgJaA9DCDnv/+OEyRDAlIaUUpRoFUsyaBZHQKloOJiRW911fZQoaAZoCWgPQwjMCdrk8HkUwJSGlFKUaBVLMmgWR0CpZ/tKIznBdX2UKGgGaAloD0MIqknwhjRqEcCUhpRSlGgVSzJoFkdAqWe8cfeUIXV9lChoBmgJaA9DCIf4hy09ehXAlIaUUpRoFUsyaBZHQKlpqmCROlB1fZQoaAZoCWgPQwj3Bl+YTJUDwJSGlFKUaBVLMmgWR0CpaV/SpiqidX2UKGgGaAloD0MIKxVUVP16E8CUhpRSlGgVSzJoFkdAqWkjCk43m3V9lChoBmgJaA9DCBUdyeU/pBjAlIaUUpRoFUsyaBZHQKlo44xUNrl1fZQoaAZoCWgPQwiZuiu7YJAWwJSGlFKUaBVLMmgWR0CparhDPWxydX2UKGgGaAloD0MIVz82yY/YGMCUhpRSlGgVSzJoFkdAqWpuDDjzZ3V9lChoBmgJaA9DCEVoBBvXHwbAlIaUUpRoFUsyaBZHQKlqMLofSx91fZQoaAZoCWgPQwi/uFSlLS73v5SGlFKUaBVLMmgWR0CpafGVAzHkdX2UKGgGaAloD0MI3EjZImnHGcCUhpRSlGgVSzJoFkdAqWvDmW+oL3V9lChoBmgJaA9DCACo4sYtlhnAlIaUUpRoFUsyaBZHQKlreTnq3Vl1fZQoaAZoCWgPQwhAwjBgyWUYwJSGlFKUaBVLMmgWR0CpazvES/TLdX2UKGgGaAloD0MILESHwJEgAcCUhpRSlGgVSzJoFkdAqWr8SXdCV3V9lChoBmgJaA9DCNmvO915UhPAlIaUUpRoFUsyaBZHQKls1UCJXQt1fZQoaAZoCWgPQwihZHJqZ2gTwJSGlFKUaBVLMmgWR0CpbIrvkRzzdX2UKGgGaAloD0MIDHTtC+ilCMCUhpRSlGgVSzJoFkdAqWxNmnO0LXV9lChoBmgJaA9DCLlt36P+egjAlIaUUpRoFUsyaBZHQKlsDiz9jwx1fZQoaAZoCWgPQwgyHqUSnkAQwJSGlFKUaBVLMmgWR0Cpbei1JDmbdX2UKGgGaAloD0MIUduGURA8+r+UhpRSlGgVSzJoFkdAqW2eZ5Rj0HV9lChoBmgJaA9DCFzK+WLvxQnAlIaUUpRoFUsyaBZHQKltYLNwBHV1fZQoaAZoCWgPQwg7wmnBi779v5SGlFKUaBVLMmgWR0CpbSGNR3vAdX2UKGgGaAloD0MIKVq5F5jlEMCUhpRSlGgVSzJoFkdAqW782DQJHHV9lChoBmgJaA9DCFga+FENWwzAlIaUUpRoFUsyaBZHQKlusqEOAiF1fZQoaAZoCWgPQwiasWg6O/kawJSGlFKUaBVLMmgWR0CpbnU1qFh5dX2UKGgGaAloD0MIdVYL7DGxGMCUhpRSlGgVSzJoFkdAqW410cOsk3V9lChoBmgJaA9DCPmFV5I8lwPAlIaUUpRoFUsyaBZHQKlwJ7laKUF1fZQoaAZoCWgPQwjNdRppqdwUwJSGlFKUaBVLMmgWR0Cpb9181Gb1dX2UKGgGaAloD0MI7q8e9622EsCUhpRSlGgVSzJoFkdAqW+gHmig03V9lChoBmgJaA9DCEqaP6a1CQ3AlIaUUpRoFUsyaBZHQKlvYLNwBHV1fZQoaAZoCWgPQwgnoImw4en7v5SGlFKUaBVLMmgWR0CpcTf8uSOjdX2UKGgGaAloD0MIXcXiN4VVDMCUhpRSlGgVSzJoFkdAqXDtvddmhHV9lChoBmgJaA9DCGoYPiKmxA3AlIaUUpRoFUsyaBZHQKlwsEf1Yhd1fZQoaAZoCWgPQwjQKcjPRm4SwJSGlFKUaBVLMmgWR0CpcHCvxH5KdX2UKGgGaAloD0MIRDF5A8w8CcCUhpRSlGgVSzJoFkdAqXJRswco6XV9lChoBmgJaA9DCO2A64oZIQLAlIaUUpRoFUsyaBZHQKlyB47A+IN1fZQoaAZoCWgPQwi7D0BqE0cKwJSGlFKUaBVLMmgWR0CpccoV2zOYdX2UKGgGaAloD0MIE2ba/pX1FMCUhpRSlGgVSzJoFkdAqXGKpR4yGnV9lChoBmgJaA9DCCVATS1bKxHAlIaUUpRoFUsyaBZHQKlzeBdUsFt1fZQoaAZoCWgPQwj3x3vVyuQZwJSGlFKUaBVLMmgWR0Cpcy3Vsk6cdX2UKGgGaAloD0MIm49rQ8XIFMCUhpRSlGgVSzJoFkdAqXLwbIcR2HV9lChoBmgJaA9DCCDtf4C16gDAlIaUUpRoFUsyaBZHQKlysWBSUC91fZQoaAZoCWgPQwilgoqqX3kTwJSGlFKUaBVLMmgWR0CpdKSFGoaUdX2UKGgGaAloD0MI7NtJRPjXFMCUhpRSlGgVSzJoFkdAqXRaMDOkcnV9lChoBmgJaA9DCHxl3qrrsATAlIaUUpRoFUsyaBZHQKl0HN34bjt1fZQoaAZoCWgPQwjTFAFO74IOwJSGlFKUaBVLMmgWR0Cpc92zWwu/dX2UKGgGaAloD0MIec4WEFr/EMCUhpRSlGgVSzJoFkdAqXWzM5fdAXV9lChoBmgJaA9DCBuADYgQNwrAlIaUUpRoFUsyaBZHQKl1aOuJUHZ1fZQoaAZoCWgPQwj7rDJTWn8OwJSGlFKUaBVLMmgWR0CpdSs+eOGTdX2UKGgGaAloD0MIns4VpYQAC8CUhpRSlGgVSzJoFkdAqXTrwpe/pXV9lChoBmgJaA9DCB+fkJ23kQnAlIaUUpRoFUsyaBZHQKl3dKaG5+Z1fZQoaAZoCWgPQwirzJTW39L+v5SGlFKUaBVLMmgWR0Cpdys1baAXdX2UKGgGaAloD0MIcw6eCU0SA8CUhpRSlGgVSzJoFkdAqXbvxri2lXV9lChoBmgJaA9DCAXfNH124AzAlIaUUpRoFUsyaBZHQKl2sQarFOx1fZQoaAZoCWgPQwi7fyxEh6ALwJSGlFKUaBVLMmgWR0CpeUO6mO2idX2UKGgGaAloD0MIQBcNGY/SC8CUhpRSlGgVSzJoFkdAqXj6ZlWfb3V9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKl4vh4t6HF1fZQoaAZoCWgPQwjvHwvRIYAUwJSGlFKUaBVLMmgWR0CpeH+HzpX7dX2UKGgGaAloD0MIQ1Thz/BmAcCUhpRSlGgVSzJoFkdAqXtRX0XgtXV9lChoBmgJaA9DCIOj5NU5hgDAlIaUUpRoFUsyaBZHQKl7CKNQ0oB1fZQoaAZoCWgPQwiGPe3w1wQEwJSGlFKUaBVLMmgWR0Cpesv8hs68dX2UKGgGaAloD0MI2nOZmgQPBsCUhpRSlGgVSzJoFkdAqXqO10DEFXV9lChoBmgJaA9DCCC0Hr5MNBPAlIaUUpRoFUsyaBZHQKl9UALApKB1fZQoaAZoCWgPQwgN/+kGCkwVwJSGlFKUaBVLMmgWR0CpfQZfdAPedX2UKGgGaAloD0MIjGSPUDO0EsCUhpRSlGgVSzJoFkdAqXzKHGjsU3V9lChoBmgJaA9DCANeZtgomxLAlIaUUpRoFUsyaBZHQKl8i2PT5O91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}