Local commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.03 +/- 0.42
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03a1a685e1cabfb7626ae5e438794bbafbc606fe6d0f8e41af4a270c1375a6c0
|
3 |
+
size 109571
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[-0.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b1a9a5d80>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8b1a9a8d40>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1687059482962909945,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwVLDvVgscT9uGgW/Uh3dP4IEUb/1X8++83AWP1xs0b7n1cI/KOFkvicR1j+wvQo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADE07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]]",
|
40 |
+
"desired_goal": "[[-0.09537268 0.9420829 -0.51993454]\n [ 1.7274573 -0.81647503 -0.40502897]\n [ 0.58766097 -0.40902984 1.5221528 ]\n [-0.22351515 1.6723984 0.5419569 ]]",
|
41 |
+
"observation": "[[0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZZ0OPh3AmTuI0oE+4Y9evfdGzL2FO849HnYFvhRHnb2us44+O1QPvpILsrxhanM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.13927229 0.00469209 0.25355935]\n [-0.05433643 -0.09974473 0.10069946]\n [-0.1303334 -0.07679573 0.2787146 ]\n [-0.13996975 -0.02173403 0.23771049]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINnaJ6q2B6r+UhpRSlIwBbJRLMowBdJRHQJkJdh6Skj51fZQoaAZoCWgPQwjiV6zhInfjv5SGlFKUaBVLMmgWR0CZCSQK8cuKdX2UKGgGaAloD0MIDtdqD3th8L+UhpRSlGgVSzJoFkdAmQjNZ/0/W3V9lChoBmgJaA9DCOy9+KI9Xt6/lIaUUpRoFUsyaBZHQJkIgRUWEbp1fZQoaAZoCWgPQwgy5xn7kg3sv5SGlFKUaBVLMmgWR0CZCtPqcEvCdX2UKGgGaAloD0MI38X7cftl6b+UhpRSlGgVSzJoFkdAmQqB3V09yXV9lChoBmgJaA9DCIUKDi+IyOq/lIaUUpRoFUsyaBZHQJkKK54GD+R1fZQoaAZoCWgPQwj8/PfgtQv1v5SGlFKUaBVLMmgWR0CZCd9lEqlQdX2UKGgGaAloD0MIGO5cGOnF5r+UhpRSlGgVSzJoFkdAmQwQTufEoHV9lChoBmgJaA9DCMZP4978huO/lIaUUpRoFUsyaBZHQJkLvjm0VrR1fZQoaAZoCWgPQwi7JqQ1Bh3kv5SGlFKUaBVLMmgWR0CZC2e/5+H8dX2UKGgGaAloD0MIqgt4mWGj27+UhpRSlGgVSzJoFkdAmQsbOVxCIHV9lChoBmgJaA9DCKN5AIv8euS/lIaUUpRoFUsyaBZHQJkNUl0HQhR1fZQoaAZoCWgPQwhjQWFQplHov5SGlFKUaBVLMmgWR0CZDQAmiQDFdX2UKGgGaAloD0MIbsFSXcBL6r+UhpRSlGgVSzJoFkdAmQyprULDynV9lChoBmgJaA9DCJm7lpAPeu+/lIaUUpRoFUsyaBZHQJkMXUH6dlN1fZQoaAZoCWgPQwjwTdNnB1zqv5SGlFKUaBVLMmgWR0CZDq/vv0AcdX2UKGgGaAloD0MI1EhL5e2I5L+UhpRSlGgVSzJoFkdAmQ5dyPuG9HV9lChoBmgJaA9DCF0XfnA+9e2/lIaUUpRoFUsyaBZHQJkOB1+y7f51fZQoaAZoCWgPQwjJIk28A7znv5SGlFKUaBVLMmgWR0CZDbrilzltdX2UKGgGaAloD0MISgosgCkD5L+UhpRSlGgVSzJoFkdAmQ/xD1Gsm3V9lChoBmgJaA9DCDNPrimQ2fG/lIaUUpRoFUsyaBZHQJkPnwZwXIl1fZQoaAZoCWgPQwhszsEzocngv5SGlFKUaBVLMmgWR0CZD0ihFmWddX2UKGgGaAloD0MIv7uVJTrL17+UhpRSlGgVSzJoFkdAmQ78cuJ1q3V9lChoBmgJaA9DCAdfmEwVjOi/lIaUUpRoFUsyaBZHQJkRKcI7eVN1fZQoaAZoCWgPQwiDvvT252Lyv5SGlFKUaBVLMmgWR0CZENe0G/vfdX2UKGgGaAloD0MI6j9rfvyl5L+UhpRSlGgVSzJoFkdAmRCBIOH313V9lChoBmgJaA9DCPvL7snDwuS/lIaUUpRoFUsyaBZHQJkQNOYYzi11fZQoaAZoCWgPQwgMyjSaXIzlv5SGlFKUaBVLMmgWR0CZEn31SOzZdX2UKGgGaAloD0MIUkfH1ciu0r+UhpRSlGgVSzJoFkdAmRIr6tT1kHV9lChoBmgJaA9DCOhpwCDpU+6/lIaUUpRoFUsyaBZHQJkR1YhdMTN1fZQoaAZoCWgPQwh1ApoIG572v5SGlFKUaBVLMmgWR0CZEYobGWD6dX2UKGgGaAloD0MIvhOzXgxl77+UhpRSlGgVSzJoFkdAmRO8u3+db3V9lChoBmgJaA9DCPqZet0iMNS/lIaUUpRoFUsyaBZHQJkTann+yZ91fZQoaAZoCWgPQwgxmL9C5gr1v5SGlFKUaBVLMmgWR0CZExQGfPHDdX2UKGgGaAloD0MIByeiX1u/6b+UhpRSlGgVSzJoFkdAmRLHs5XEInV9lChoBmgJaA9DCPhQoiWPp+W/lIaUUpRoFUsyaBZHQJkVI4zabnZ1fZQoaAZoCWgPQwhFnE6y1eXtv5SGlFKUaBVLMmgWR0CZFNIDoyKvdX2UKGgGaAloD0MI1V5E2zH177+UhpRSlGgVSzJoFkdAmRR7oKUmlnV9lChoBmgJaA9DCPDDQUKUL++/lIaUUpRoFUsyaBZHQJkULxri2lV1fZQoaAZoCWgPQwi0HOihtg36v5SGlFKUaBVLMmgWR0CZFnq3EyckdX2UKGgGaAloD0MIi28ofLaO7r+UhpRSlGgVSzJoFkdAmRYop6QeWHV9lChoBmgJaA9DCEhvuI/c2vK/lIaUUpRoFUsyaBZHQJkV0kZ75VR1fZQoaAZoCWgPQwhJ9Z1flKDpv5SGlFKUaBVLMmgWR0CZFYXgtOEedX2UKGgGaAloD0MIjEzAr5Fk8b+UhpRSlGgVSzJoFkdAmRfB4Uvf0nV9lChoBmgJaA9DCCiZnNoZZvG/lIaUUpRoFUsyaBZHQJkXb7pFCsx1fZQoaAZoCWgPQwgx6lp7n+r0v5SGlFKUaBVLMmgWR0CZFxkaMrEtdX2UKGgGaAloD0MIVkrP9BIj9L+UhpRSlGgVSzJoFkdAmRbM2BJ7LXV9lChoBmgJaA9DCAzohTsXxuS/lIaUUpRoFUsyaBZHQJkY+jdpItl1fZQoaAZoCWgPQwhl+5C3XD3wv5SGlFKUaBVLMmgWR0CZGKgeA/cGdX2UKGgGaAloD0MIwMsMG2W98L+UhpRSlGgVSzJoFkdAmRhRfWtlqnV9lChoBmgJaA9DCB3KUBVT6eu/lIaUUpRoFUsyaBZHQJkYBS3solV1fZQoaAZoCWgPQwiyKy0j9Z78v5SGlFKUaBVLMmgWR0CZGjq20AtGdX2UKGgGaAloD0MIqDXNO05R67+UhpRSlGgVSzJoFkdAmRnolIEr5XV9lChoBmgJaA9DCHEDPj+MkO2/lIaUUpRoFUsyaBZHQJkZkiC8OCp1fZQoaAZoCWgPQwh4DmWoiqngv5SGlFKUaBVLMmgWR0CZGUXRPXTWdX2UKGgGaAloD0MIEr73N2iv27+UhpRSlGgVSzJoFkdAmRtzcqOLi3V9lChoBmgJaA9DCJw1eF+Vi/i/lIaUUpRoFUsyaBZHQJkbIR15jYt1fZQoaAZoCWgPQwhClC9oIcH4v5SGlFKUaBVLMmgWR0CZGsrrPdEcdX2UKGgGaAloD0MImQ0yycgZ8L+UhpRSlGgVSzJoFkdAmRp+vECNj3V9lChoBmgJaA9DCCvCTUaV4e+/lIaUUpRoFUsyaBZHQJkcssqaw2V1fZQoaAZoCWgPQwgeM1AZ/z7ov5SGlFKUaBVLMmgWR0CZHGC2tuDSdX2UKGgGaAloD0MIweJw5lcz9b+UhpRSlGgVSzJoFkdAmRwKL0jC53V9lChoBmgJaA9DCCU/4les4fK/lIaUUpRoFUsyaBZHQJkbvd/J/5N1fZQoaAZoCWgPQwju0RvuI7fzv5SGlFKUaBVLMmgWR0CZHfv8ZUDMdX2UKGgGaAloD0MIveR/8nfv8b+UhpRSlGgVSzJoFkdAmR2p3s5XEXV9lChoBmgJaA9DCFiP+1brhPa/lIaUUpRoFUsyaBZHQJkdU13t8eF1fZQoaAZoCWgPQwiIY13cRkP4v5SGlFKUaBVLMmgWR0CZHQcH4XXRdX2UKGgGaAloD0MIkPeqlQm/8b+UhpRSlGgVSzJoFkdAmR9PtD2JznV9lChoBmgJaA9DCHx716AvPfO/lIaUUpRoFUsyaBZHQJke/bwjMV11fZQoaAZoCWgPQwi688RztoDcv5SGlFKUaBVLMmgWR0CZHqdUbT+edX2UKGgGaAloD0MI0y8Rb53/7L+UhpRSlGgVSzJoFkdAmR5bFCLMtHV9lChoBmgJaA9DCFG/C1uzFfG/lIaUUpRoFUsyaBZHQJkgkwwj+rF1fZQoaAZoCWgPQwirsu+K4B8AwJSGlFKUaBVLMmgWR0CZIEDNQj2SdX2UKGgGaAloD0MIJNHLKJbb5b+UhpRSlGgVSzJoFkdAmR/qXWvr4XV9lChoBmgJaA9DCFbVy+80GeG/lIaUUpRoFUsyaBZHQJkfnhaTwDx1fZQoaAZoCWgPQwj0MR8Q6Az3v5SGlFKUaBVLMmgWR0CZIc6po9LYdX2UKGgGaAloD0MIa7kzEwwn87+UhpRSlGgVSzJoFkdAmSF8r/bTMXV9lChoBmgJaA9DCIyd8BKcuvO/lIaUUpRoFUsyaBZHQJkhJn7Hhjx1fZQoaAZoCWgPQwhzMJsAw/Lsv5SGlFKUaBVLMmgWR0CZINoakyk9dX2UKGgGaAloD0MIufqxSX4E8L+UhpRSlGgVSzJoFkdAmSMosAeaKHV9lChoBmgJaA9DCNu/stKk1Pa/lIaUUpRoFUsyaBZHQJki1qtYB/91fZQoaAZoCWgPQwizfchbrn70v5SGlFKUaBVLMmgWR0CZIoCIUJv6dX2UKGgGaAloD0MIbY0IxsEl9r+UhpRSlGgVSzJoFkdAmSI0D6nBL3V9lChoBmgJaA9DCNbgfVUuVPy/lIaUUpRoFUsyaBZHQJkklMRHww11fZQoaAZoCWgPQwheSfJc34fev5SGlFKUaBVLMmgWR0CZJEK2rn1WdX2UKGgGaAloD0MIt9CVCFT/77+UhpRSlGgVSzJoFkdAmSPsXenAI3V9lChoBmgJaA9DCKH0hZDzfvi/lIaUUpRoFUsyaBZHQJkjoKXv6TJ1fZQoaAZoCWgPQwgVi98UVur1v5SGlFKUaBVLMmgWR0CZJfDqGDcudX2UKGgGaAloD0MIaeId4ElL9b+UhpRSlGgVSzJoFkdAmSWe4kNWl3V9lChoBmgJaA9DCMU9lj50QfC/lIaUUpRoFUsyaBZHQJklSG5+Ytx1fZQoaAZoCWgPQwgTfqmfNxX7v5SGlFKUaBVLMmgWR0CZJPv8IiTudX2UKGgGaAloD0MIcCL6tfXT4L+UhpRSlGgVSzJoFkdAmSdHYHxBmnV9lChoBmgJaA9DCGUdjq7SvQHAlIaUUpRoFUsyaBZHQJkm9WT5ftx1fZQoaAZoCWgPQwiBzqRN1T32v5SGlFKUaBVLMmgWR0CZJp8QqZtvdX2UKGgGaAloD0MIWDz1SIPb57+UhpRSlGgVSzJoFkdAmSZS1E3KjnV9lChoBmgJaA9DCFrUJ7nDJvS/lIaUUpRoFUsyaBZHQJkogOjIq9Z1fZQoaAZoCWgPQwi6hhkaTwTnv5SGlFKUaBVLMmgWR0CZKC7SApazdX2UKGgGaAloD0MIK9oc5zZh5L+UhpRSlGgVSzJoFkdAmSfYOlO45XV9lChoBmgJaA9DCJTeN772zPG/lIaUUpRoFUsyaBZHQJkni8nNPgx1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00793e8fb5b148096f049bcda86bf45ffce0477259721d0389a6c35aad5e5d3b
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90a1403125f83d03cdf69e300b5141d201dec036b5c58599aa39012f09f2ecf5
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.15.
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.1+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.0
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc523ce40d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc523ecae80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686988741668100144, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk8UKv6eyKr/6X8I+PxuxvS0Uiz/PLPy9o4LsPkbZq7/U7Ly/+hqWv4A9PD8oepS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]]", "desired_goal": "[[-0.54207724 -0.6667885 0.3796385 ]\n [-0.08647775 1.0865532 -0.12313234]\n [ 0.46193418 -1.3425682 -1.4759774 ]\n [-1.1726983 0.7353134 -0.28999448]]", "observation": "[[ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0K2PRp3oL06Drw94aUvPeOlVL1ikHw+4BRMvQpqJzwAqXE93hcSPrF9DT0AI0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08899333 -0.07835217 0.09182401]\n [ 0.0428828 -0.05191601 0.24664453]\n [-0.0498246 0.01021815 0.05899906]\n [ 0.14266917 0.0345437 0.19544601]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaxFRTN7QEMCUhpRSlIwBbJRLMowBdJRHQKleVzySV4Z1fZQoaAZoCWgPQwgEyTuHMkQTwJSGlFKUaBVLMmgWR0CpXg4ecQRPdX2UKGgGaAloD0MIMBAEyNCxC8CUhpRSlGgVSzJoFkdAqV3RcPe54HV9lChoBmgJaA9DCIaOHVTi+hHAlIaUUpRoFUsyaBZHQKldkoy9EkV1fZQoaAZoCWgPQwjon+BiRY0HwJSGlFKUaBVLMmgWR0CpYDqioKlYdX2UKGgGaAloD0MItYmT+x1qB8CUhpRSlGgVSzJoFkdAqV/yn+AEuHV9lChoBmgJaA9DCEpdMo6RjAjAlIaUUpRoFUsyaBZHQKlftnscABF1fZQoaAZoCWgPQwglea7vwwH9v5SGlFKUaBVLMmgWR0CpX3f5DZ13dX2UKGgGaAloD0MIn+i68INDG8CUhpRSlGgVSzJoFkdAqWH/dyksSXV9lChoBmgJaA9DCN5UpMLYggLAlIaUUpRoFUsyaBZHQKlhtPRArx11fZQoaAZoCWgPQwizeRwG89cTwJSGlFKUaBVLMmgWR0CpYXeGfwqidX2UKGgGaAloD0MIRDUlWYdzE8CUhpRSlGgVSzJoFkdAqWE4H9m6G3V9lChoBmgJaA9DCJtWCoFcQgvAlIaUUpRoFUsyaBZHQKljBtVrAQB1fZQoaAZoCWgPQwiDpbqAlwkQwJSGlFKUaBVLMmgWR0CpYrz1kDp1dX2UKGgGaAloD0MIyaoINxnVGMCUhpRSlGgVSzJoFkdAqWJ/e7+T/3V9lChoBmgJaA9DCIU/w5s1WA3AlIaUUpRoFUsyaBZHQKliQB3A2yd1fZQoaAZoCWgPQwgJqdvZV94RwJSGlFKUaBVLMmgWR0CpZBYFzMibdX2UKGgGaAloD0MIY+/FF+1RDcCUhpRSlGgVSzJoFkdAqWPLsD4gzXV9lChoBmgJaA9DCE0UIXU7GwXAlIaUUpRoFUsyaBZHQKljjkzXSSh1fZQoaAZoCWgPQwhHrwYoDVUBwJSGlFKUaBVLMmgWR0CpY07lijL0dX2UKGgGaAloD0MIeEMaFTj5E8CUhpRSlGgVSzJoFkdAqWUiAjIJaHV9lChoBmgJaA9DCLEaS1gbAwzAlIaUUpRoFUsyaBZHQKlk19+gDih1fZQoaAZoCWgPQwgIW+z2WYUGwJSGlFKUaBVLMmgWR0CpZJpvo/zKdX2UKGgGaAloD0MIUMJM27+SEcCUhpRSlGgVSzJoFkdAqWRbDEWIoHV9lChoBmgJaA9DCOksswjFlvy/lIaUUpRoFUsyaBZHQKlmU90zTF51fZQoaAZoCWgPQwiV1AloIowLwJSGlFKUaBVLMmgWR0CpZgqBun/DdX2UKGgGaAloD0MIg2vu6H85GcCUhpRSlGgVSzJoFkdAqWXOJSBK+XV9lChoBmgJaA9DCKq7sgsG1xLAlIaUUpRoFUsyaBZHQKlljqW1MM91fZQoaAZoCWgPQwiZR/5g4BkPwJSGlFKUaBVLMmgWR0CpZ3EAo5PudX2UKGgGaAloD0MIVix+U1gpAsCUhpRSlGgVSzJoFkdAqWcnek56t3V9lChoBmgJaA9DCJAWZwxzchPAlIaUUpRoFUsyaBZHQKlm6w+t8u11fZQoaAZoCWgPQwgYIxKFlqUXwJSGlFKUaBVLMmgWR0CpZqxgAp8XdX2UKGgGaAloD0MIe9egL73dB8CUhpRSlGgVSzJoFkdAqWiC9K28ZnV9lChoBmgJaA9DCDnv/+OEyRDAlIaUUpRoFUsyaBZHQKloOJiRW911fZQoaAZoCWgPQwjMCdrk8HkUwJSGlFKUaBVLMmgWR0CpZ/tKIznBdX2UKGgGaAloD0MIqknwhjRqEcCUhpRSlGgVSzJoFkdAqWe8cfeUIXV9lChoBmgJaA9DCIf4hy09ehXAlIaUUpRoFUsyaBZHQKlpqmCROlB1fZQoaAZoCWgPQwj3Bl+YTJUDwJSGlFKUaBVLMmgWR0CpaV/SpiqidX2UKGgGaAloD0MIKxVUVP16E8CUhpRSlGgVSzJoFkdAqWkjCk43m3V9lChoBmgJaA9DCBUdyeU/pBjAlIaUUpRoFUsyaBZHQKlo44xUNrl1fZQoaAZoCWgPQwiZuiu7YJAWwJSGlFKUaBVLMmgWR0CparhDPWxydX2UKGgGaAloD0MIVz82yY/YGMCUhpRSlGgVSzJoFkdAqWpuDDjzZ3V9lChoBmgJaA9DCEVoBBvXHwbAlIaUUpRoFUsyaBZHQKlqMLofSx91fZQoaAZoCWgPQwi/uFSlLS73v5SGlFKUaBVLMmgWR0CpafGVAzHkdX2UKGgGaAloD0MI3EjZImnHGcCUhpRSlGgVSzJoFkdAqWvDmW+oL3V9lChoBmgJaA9DCACo4sYtlhnAlIaUUpRoFUsyaBZHQKlreTnq3Vl1fZQoaAZoCWgPQwhAwjBgyWUYwJSGlFKUaBVLMmgWR0CpazvES/TLdX2UKGgGaAloD0MILESHwJEgAcCUhpRSlGgVSzJoFkdAqWr8SXdCV3V9lChoBmgJaA9DCNmvO915UhPAlIaUUpRoFUsyaBZHQKls1UCJXQt1fZQoaAZoCWgPQwihZHJqZ2gTwJSGlFKUaBVLMmgWR0CpbIrvkRzzdX2UKGgGaAloD0MIDHTtC+ilCMCUhpRSlGgVSzJoFkdAqWxNmnO0LXV9lChoBmgJaA9DCLlt36P+egjAlIaUUpRoFUsyaBZHQKlsDiz9jwx1fZQoaAZoCWgPQwgyHqUSnkAQwJSGlFKUaBVLMmgWR0Cpbei1JDmbdX2UKGgGaAloD0MIUduGURA8+r+UhpRSlGgVSzJoFkdAqW2eZ5Rj0HV9lChoBmgJaA9DCFzK+WLvxQnAlIaUUpRoFUsyaBZHQKltYLNwBHV1fZQoaAZoCWgPQwg7wmnBi779v5SGlFKUaBVLMmgWR0CpbSGNR3vAdX2UKGgGaAloD0MIKVq5F5jlEMCUhpRSlGgVSzJoFkdAqW782DQJHHV9lChoBmgJaA9DCFga+FENWwzAlIaUUpRoFUsyaBZHQKlusqEOAiF1fZQoaAZoCWgPQwiasWg6O/kawJSGlFKUaBVLMmgWR0CpbnU1qFh5dX2UKGgGaAloD0MIdVYL7DGxGMCUhpRSlGgVSzJoFkdAqW410cOsk3V9lChoBmgJaA9DCPmFV5I8lwPAlIaUUpRoFUsyaBZHQKlwJ7laKUF1fZQoaAZoCWgPQwjNdRppqdwUwJSGlFKUaBVLMmgWR0Cpb9181Gb1dX2UKGgGaAloD0MI7q8e9622EsCUhpRSlGgVSzJoFkdAqW+gHmig03V9lChoBmgJaA9DCEqaP6a1CQ3AlIaUUpRoFUsyaBZHQKlvYLNwBHV1fZQoaAZoCWgPQwgnoImw4en7v5SGlFKUaBVLMmgWR0CpcTf8uSOjdX2UKGgGaAloD0MIXcXiN4VVDMCUhpRSlGgVSzJoFkdAqXDtvddmhHV9lChoBmgJaA9DCGoYPiKmxA3AlIaUUpRoFUsyaBZHQKlwsEf1Yhd1fZQoaAZoCWgPQwjQKcjPRm4SwJSGlFKUaBVLMmgWR0CpcHCvxH5KdX2UKGgGaAloD0MIRDF5A8w8CcCUhpRSlGgVSzJoFkdAqXJRswco6XV9lChoBmgJaA9DCO2A64oZIQLAlIaUUpRoFUsyaBZHQKlyB47A+IN1fZQoaAZoCWgPQwi7D0BqE0cKwJSGlFKUaBVLMmgWR0CpccoV2zOYdX2UKGgGaAloD0MIE2ba/pX1FMCUhpRSlGgVSzJoFkdAqXGKpR4yGnV9lChoBmgJaA9DCCVATS1bKxHAlIaUUpRoFUsyaBZHQKlzeBdUsFt1fZQoaAZoCWgPQwj3x3vVyuQZwJSGlFKUaBVLMmgWR0Cpcy3Vsk6cdX2UKGgGaAloD0MIm49rQ8XIFMCUhpRSlGgVSzJoFkdAqXLwbIcR2HV9lChoBmgJaA9DCCDtf4C16gDAlIaUUpRoFUsyaBZHQKlysWBSUC91fZQoaAZoCWgPQwilgoqqX3kTwJSGlFKUaBVLMmgWR0CpdKSFGoaUdX2UKGgGaAloD0MI7NtJRPjXFMCUhpRSlGgVSzJoFkdAqXRaMDOkcnV9lChoBmgJaA9DCHxl3qrrsATAlIaUUpRoFUsyaBZHQKl0HN34bjt1fZQoaAZoCWgPQwjTFAFO74IOwJSGlFKUaBVLMmgWR0Cpc92zWwu/dX2UKGgGaAloD0MIec4WEFr/EMCUhpRSlGgVSzJoFkdAqXWzM5fdAXV9lChoBmgJaA9DCBuADYgQNwrAlIaUUpRoFUsyaBZHQKl1aOuJUHZ1fZQoaAZoCWgPQwj7rDJTWn8OwJSGlFKUaBVLMmgWR0CpdSs+eOGTdX2UKGgGaAloD0MIns4VpYQAC8CUhpRSlGgVSzJoFkdAqXTrwpe/pXV9lChoBmgJaA9DCB+fkJ23kQnAlIaUUpRoFUsyaBZHQKl3dKaG5+Z1fZQoaAZoCWgPQwirzJTW39L+v5SGlFKUaBVLMmgWR0Cpdys1baAXdX2UKGgGaAloD0MIcw6eCU0SA8CUhpRSlGgVSzJoFkdAqXbvxri2lXV9lChoBmgJaA9DCAXfNH124AzAlIaUUpRoFUsyaBZHQKl2sQarFOx1fZQoaAZoCWgPQwi7fyxEh6ALwJSGlFKUaBVLMmgWR0CpeUO6mO2idX2UKGgGaAloD0MIQBcNGY/SC8CUhpRSlGgVSzJoFkdAqXj6ZlWfb3V9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKl4vh4t6HF1fZQoaAZoCWgPQwjvHwvRIYAUwJSGlFKUaBVLMmgWR0CpeH+HzpX7dX2UKGgGaAloD0MIQ1Thz/BmAcCUhpRSlGgVSzJoFkdAqXtRX0XgtXV9lChoBmgJaA9DCIOj5NU5hgDAlIaUUpRoFUsyaBZHQKl7CKNQ0oB1fZQoaAZoCWgPQwiGPe3w1wQEwJSGlFKUaBVLMmgWR0Cpesv8hs68dX2UKGgGaAloD0MI2nOZmgQPBsCUhpRSlGgVSzJoFkdAqXqO10DEFXV9lChoBmgJaA9DCCC0Hr5MNBPAlIaUUpRoFUsyaBZHQKl9UALApKB1fZQoaAZoCWgPQwgN/+kGCkwVwJSGlFKUaBVLMmgWR0CpfQZfdAPedX2UKGgGaAloD0MIjGSPUDO0EsCUhpRSlGgVSzJoFkdAqXzKHGjsU3V9lChoBmgJaA9DCANeZtgomxLAlIaUUpRoFUsyaBZHQKl8i2PT5O91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b1a9a5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8b1a9a8d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687059482962909945, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwVLDvVgscT9uGgW/Uh3dP4IEUb/1X8++83AWP1xs0b7n1cI/KOFkvicR1j+wvQo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADE07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]\n [0.3648969 0.01883279 0.5321937 ]]", "desired_goal": "[[-0.09537268 0.9420829 -0.51993454]\n [ 1.7274573 -0.81647503 -0.40502897]\n [ 0.58766097 -0.40902984 1.5221528 ]\n [-0.22351515 1.6723984 0.5419569 ]]", "observation": "[[0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]\n [0.3648969 0.01883279 0.5321937 0.05353563 0.00420888 0.05382124]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZZ0OPh3AmTuI0oE+4Y9evfdGzL2FO849HnYFvhRHnb2us44+O1QPvpILsrxhanM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13927229 0.00469209 0.25355935]\n [-0.05433643 -0.09974473 0.10069946]\n [-0.1303334 -0.07679573 0.2787146 ]\n [-0.13996975 -0.02173403 0.23771049]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINnaJ6q2B6r+UhpRSlIwBbJRLMowBdJRHQJkJdh6Skj51fZQoaAZoCWgPQwjiV6zhInfjv5SGlFKUaBVLMmgWR0CZCSQK8cuKdX2UKGgGaAloD0MIDtdqD3th8L+UhpRSlGgVSzJoFkdAmQjNZ/0/W3V9lChoBmgJaA9DCOy9+KI9Xt6/lIaUUpRoFUsyaBZHQJkIgRUWEbp1fZQoaAZoCWgPQwgy5xn7kg3sv5SGlFKUaBVLMmgWR0CZCtPqcEvCdX2UKGgGaAloD0MI38X7cftl6b+UhpRSlGgVSzJoFkdAmQqB3V09yXV9lChoBmgJaA9DCIUKDi+IyOq/lIaUUpRoFUsyaBZHQJkKK54GD+R1fZQoaAZoCWgPQwj8/PfgtQv1v5SGlFKUaBVLMmgWR0CZCd9lEqlQdX2UKGgGaAloD0MIGO5cGOnF5r+UhpRSlGgVSzJoFkdAmQwQTufEoHV9lChoBmgJaA9DCMZP4978huO/lIaUUpRoFUsyaBZHQJkLvjm0VrR1fZQoaAZoCWgPQwi7JqQ1Bh3kv5SGlFKUaBVLMmgWR0CZC2e/5+H8dX2UKGgGaAloD0MIqgt4mWGj27+UhpRSlGgVSzJoFkdAmQsbOVxCIHV9lChoBmgJaA9DCKN5AIv8euS/lIaUUpRoFUsyaBZHQJkNUl0HQhR1fZQoaAZoCWgPQwhjQWFQplHov5SGlFKUaBVLMmgWR0CZDQAmiQDFdX2UKGgGaAloD0MIbsFSXcBL6r+UhpRSlGgVSzJoFkdAmQyprULDynV9lChoBmgJaA9DCJm7lpAPeu+/lIaUUpRoFUsyaBZHQJkMXUH6dlN1fZQoaAZoCWgPQwjwTdNnB1zqv5SGlFKUaBVLMmgWR0CZDq/vv0AcdX2UKGgGaAloD0MI1EhL5e2I5L+UhpRSlGgVSzJoFkdAmQ5dyPuG9HV9lChoBmgJaA9DCF0XfnA+9e2/lIaUUpRoFUsyaBZHQJkOB1+y7f51fZQoaAZoCWgPQwjJIk28A7znv5SGlFKUaBVLMmgWR0CZDbrilzltdX2UKGgGaAloD0MISgosgCkD5L+UhpRSlGgVSzJoFkdAmQ/xD1Gsm3V9lChoBmgJaA9DCDNPrimQ2fG/lIaUUpRoFUsyaBZHQJkPnwZwXIl1fZQoaAZoCWgPQwhszsEzocngv5SGlFKUaBVLMmgWR0CZD0ihFmWddX2UKGgGaAloD0MIv7uVJTrL17+UhpRSlGgVSzJoFkdAmQ78cuJ1q3V9lChoBmgJaA9DCAdfmEwVjOi/lIaUUpRoFUsyaBZHQJkRKcI7eVN1fZQoaAZoCWgPQwiDvvT252Lyv5SGlFKUaBVLMmgWR0CZENe0G/vfdX2UKGgGaAloD0MI6j9rfvyl5L+UhpRSlGgVSzJoFkdAmRCBIOH313V9lChoBmgJaA9DCPvL7snDwuS/lIaUUpRoFUsyaBZHQJkQNOYYzi11fZQoaAZoCWgPQwgMyjSaXIzlv5SGlFKUaBVLMmgWR0CZEn31SOzZdX2UKGgGaAloD0MIUkfH1ciu0r+UhpRSlGgVSzJoFkdAmRIr6tT1kHV9lChoBmgJaA9DCOhpwCDpU+6/lIaUUpRoFUsyaBZHQJkR1YhdMTN1fZQoaAZoCWgPQwh1ApoIG572v5SGlFKUaBVLMmgWR0CZEYobGWD6dX2UKGgGaAloD0MIvhOzXgxl77+UhpRSlGgVSzJoFkdAmRO8u3+db3V9lChoBmgJaA9DCPqZet0iMNS/lIaUUpRoFUsyaBZHQJkTann+yZ91fZQoaAZoCWgPQwgxmL9C5gr1v5SGlFKUaBVLMmgWR0CZExQGfPHDdX2UKGgGaAloD0MIByeiX1u/6b+UhpRSlGgVSzJoFkdAmRLHs5XEInV9lChoBmgJaA9DCPhQoiWPp+W/lIaUUpRoFUsyaBZHQJkVI4zabnZ1fZQoaAZoCWgPQwhFnE6y1eXtv5SGlFKUaBVLMmgWR0CZFNIDoyKvdX2UKGgGaAloD0MI1V5E2zH177+UhpRSlGgVSzJoFkdAmRR7oKUmlnV9lChoBmgJaA9DCPDDQUKUL++/lIaUUpRoFUsyaBZHQJkULxri2lV1fZQoaAZoCWgPQwi0HOihtg36v5SGlFKUaBVLMmgWR0CZFnq3EyckdX2UKGgGaAloD0MIi28ofLaO7r+UhpRSlGgVSzJoFkdAmRYop6QeWHV9lChoBmgJaA9DCEhvuI/c2vK/lIaUUpRoFUsyaBZHQJkV0kZ75VR1fZQoaAZoCWgPQwhJ9Z1flKDpv5SGlFKUaBVLMmgWR0CZFYXgtOEedX2UKGgGaAloD0MIjEzAr5Fk8b+UhpRSlGgVSzJoFkdAmRfB4Uvf0nV9lChoBmgJaA9DCCiZnNoZZvG/lIaUUpRoFUsyaBZHQJkXb7pFCsx1fZQoaAZoCWgPQwgx6lp7n+r0v5SGlFKUaBVLMmgWR0CZFxkaMrEtdX2UKGgGaAloD0MIVkrP9BIj9L+UhpRSlGgVSzJoFkdAmRbM2BJ7LXV9lChoBmgJaA9DCAzohTsXxuS/lIaUUpRoFUsyaBZHQJkY+jdpItl1fZQoaAZoCWgPQwhl+5C3XD3wv5SGlFKUaBVLMmgWR0CZGKgeA/cGdX2UKGgGaAloD0MIwMsMG2W98L+UhpRSlGgVSzJoFkdAmRhRfWtlqnV9lChoBmgJaA9DCB3KUBVT6eu/lIaUUpRoFUsyaBZHQJkYBS3solV1fZQoaAZoCWgPQwiyKy0j9Z78v5SGlFKUaBVLMmgWR0CZGjq20AtGdX2UKGgGaAloD0MIqDXNO05R67+UhpRSlGgVSzJoFkdAmRnolIEr5XV9lChoBmgJaA9DCHEDPj+MkO2/lIaUUpRoFUsyaBZHQJkZkiC8OCp1fZQoaAZoCWgPQwh4DmWoiqngv5SGlFKUaBVLMmgWR0CZGUXRPXTWdX2UKGgGaAloD0MIEr73N2iv27+UhpRSlGgVSzJoFkdAmRtzcqOLi3V9lChoBmgJaA9DCJw1eF+Vi/i/lIaUUpRoFUsyaBZHQJkbIR15jYt1fZQoaAZoCWgPQwhClC9oIcH4v5SGlFKUaBVLMmgWR0CZGsrrPdEcdX2UKGgGaAloD0MImQ0yycgZ8L+UhpRSlGgVSzJoFkdAmRp+vECNj3V9lChoBmgJaA9DCCvCTUaV4e+/lIaUUpRoFUsyaBZHQJkcssqaw2V1fZQoaAZoCWgPQwgeM1AZ/z7ov5SGlFKUaBVLMmgWR0CZHGC2tuDSdX2UKGgGaAloD0MIweJw5lcz9b+UhpRSlGgVSzJoFkdAmRwKL0jC53V9lChoBmgJaA9DCCU/4les4fK/lIaUUpRoFUsyaBZHQJkbvd/J/5N1fZQoaAZoCWgPQwju0RvuI7fzv5SGlFKUaBVLMmgWR0CZHfv8ZUDMdX2UKGgGaAloD0MIveR/8nfv8b+UhpRSlGgVSzJoFkdAmR2p3s5XEXV9lChoBmgJaA9DCFiP+1brhPa/lIaUUpRoFUsyaBZHQJkdU13t8eF1fZQoaAZoCWgPQwiIY13cRkP4v5SGlFKUaBVLMmgWR0CZHQcH4XXRdX2UKGgGaAloD0MIkPeqlQm/8b+UhpRSlGgVSzJoFkdAmR9PtD2JznV9lChoBmgJaA9DCHx716AvPfO/lIaUUpRoFUsyaBZHQJke/bwjMV11fZQoaAZoCWgPQwi688RztoDcv5SGlFKUaBVLMmgWR0CZHqdUbT+edX2UKGgGaAloD0MI0y8Rb53/7L+UhpRSlGgVSzJoFkdAmR5bFCLMtHV9lChoBmgJaA9DCFG/C1uzFfG/lIaUUpRoFUsyaBZHQJkgkwwj+rF1fZQoaAZoCWgPQwirsu+K4B8AwJSGlFKUaBVLMmgWR0CZIEDNQj2SdX2UKGgGaAloD0MIJNHLKJbb5b+UhpRSlGgVSzJoFkdAmR/qXWvr4XV9lChoBmgJaA9DCFbVy+80GeG/lIaUUpRoFUsyaBZHQJkfnhaTwDx1fZQoaAZoCWgPQwj0MR8Q6Az3v5SGlFKUaBVLMmgWR0CZIc6po9LYdX2UKGgGaAloD0MIa7kzEwwn87+UhpRSlGgVSzJoFkdAmSF8r/bTMXV9lChoBmgJaA9DCIyd8BKcuvO/lIaUUpRoFUsyaBZHQJkhJn7Hhjx1fZQoaAZoCWgPQwhzMJsAw/Lsv5SGlFKUaBVLMmgWR0CZINoakyk9dX2UKGgGaAloD0MIufqxSX4E8L+UhpRSlGgVSzJoFkdAmSMosAeaKHV9lChoBmgJaA9DCNu/stKk1Pa/lIaUUpRoFUsyaBZHQJki1qtYB/91fZQoaAZoCWgPQwizfchbrn70v5SGlFKUaBVLMmgWR0CZIoCIUJv6dX2UKGgGaAloD0MIbY0IxsEl9r+UhpRSlGgVSzJoFkdAmSI0D6nBL3V9lChoBmgJaA9DCNbgfVUuVPy/lIaUUpRoFUsyaBZHQJkklMRHww11fZQoaAZoCWgPQwheSfJc34fev5SGlFKUaBVLMmgWR0CZJEK2rn1WdX2UKGgGaAloD0MIt9CVCFT/77+UhpRSlGgVSzJoFkdAmSPsXenAI3V9lChoBmgJaA9DCKH0hZDzfvi/lIaUUpRoFUsyaBZHQJkjoKXv6TJ1fZQoaAZoCWgPQwgVi98UVur1v5SGlFKUaBVLMmgWR0CZJfDqGDcudX2UKGgGaAloD0MIaeId4ElL9b+UhpRSlGgVSzJoFkdAmSWe4kNWl3V9lChoBmgJaA9DCMU9lj50QfC/lIaUUpRoFUsyaBZHQJklSG5+Ytx1fZQoaAZoCWgPQwgTfqmfNxX7v5SGlFKUaBVLMmgWR0CZJPv8IiTudX2UKGgGaAloD0MIcCL6tfXT4L+UhpRSlGgVSzJoFkdAmSdHYHxBmnV9lChoBmgJaA9DCGUdjq7SvQHAlIaUUpRoFUsyaBZHQJkm9WT5ftx1fZQoaAZoCWgPQwiBzqRN1T32v5SGlFKUaBVLMmgWR0CZJp8QqZtvdX2UKGgGaAloD0MIWDz1SIPb57+UhpRSlGgVSzJoFkdAmSZS1E3KjnV9lChoBmgJaA9DCFrUJ7nDJvS/lIaUUpRoFUsyaBZHQJkogOjIq9Z1fZQoaAZoCWgPQwi6hhkaTwTnv5SGlFKUaBVLMmgWR0CZKC7SApazdX2UKGgGaAloD0MIK9oc5zZh5L+UhpRSlGgVSzJoFkdAmSfYOlO45XV9lChoBmgJaA9DCJTeN772zPG/lIaUUpRoFUsyaBZHQJkni8nNPgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.0317956485319884, "std_reward": 0.4243798812080002, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-18T04:09:12.939773"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70451434c0bb6abe2d3781ab88d9fdc153d7893420c7fb8949c0d1c19adbfd30
|
3 |
size 2387
|