Edit model card

SentenceTransformer based on embaas/sentence-transformers-multilingual-e5-large

This is a sentence-transformers model finetuned from embaas/sentence-transformers-multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jerryyun/kicon_e5large_15_v1")
# Run inference
sentences = [
    '억지말뚝으로 보강된 비탈면의 내진설계 결정 기준은 무엇인가요?',
    '비탈면보강공법 KDS117015:2020KDS110000지반설계기준 9입시켜야한다 .4.3.3내진설계여부(1)억지말뚝으로보강된비탈면의내진설계는보강되지않은비탈면의내진설계여부에따라결정하며 ,KDS 119000의비탈면내진등급을참고한다 .(2)억지말뚝으로보강된비탈면의지진시안정해석은 4.4및KDS 119000을참조한다 .4.4지진시안정해석4.4.1네일(1)지진시네일로보강된비탈면의안정해석에서는내적안정과외적안정성을검토한다 .(2)네일로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며 ,파괴토체의중심에횡방향으로작용시킨다 .(3)지진에의한지진계수는 KDS 119000(1.6.5)에서제시하는유효수평지반가 속도(S)를이용하여산정한다 .4.4.2록볼트(1)지진시록볼트로보강된비탈면의안정해석에서는외적안정성을검토한다 .(2)록볼트로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며 ,파괴토체의중심에횡방향으로작용시킨다 .',
    '지반계측 KDS111015:2021KDS110000지반설계기준 344.2.2.2 계측기기운용기법(1) 인력에의한계측기기운용과자동화장비에의한운용기법으로크게구분할수있으며, 붕괴및활동의진행특성, 계측대상시설물의중요도 , 피해발생시영향, 경제성, 계측빈도등을고려하여운용기법을선택하여야한다.4.2.2.3 일반적인계측관리의자동화(1) 기록지또는저장장치에계측자료를기록할때까지를자동화하고 , 그후의처리는별도로컴퓨터로실시하는반자동계측관리기법과 , 자료수집ㆍ해석ㆍ그래프화까지를유선ㆍ무선으로온라인화된시스템으로일관하여실시하는전자동계측관리기법및상기의두가지방법을병용하는기법으로구분하며 , 계측대상조건을고려하여운용기법을선정하여야한다.4.2.2.4 피해방지및최소화방법(1) 조기에징후를감지하는것이중요하고 , 모니터링과동시에신속하게그정보를전달ㆍ처리하는것이필요하며계측자료의수집ㆍ처리ㆍ해석까지를일괄하여처리하는자동화기술을사용하는것을고려하여야한다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5449
cosine_accuracy@3 0.7218
cosine_accuracy@5 0.778
cosine_accuracy@10 0.8453
cosine_precision@1 0.5449
cosine_precision@3 0.2406
cosine_precision@5 0.1556
cosine_precision@10 0.0845
cosine_recall@1 0.5449
cosine_recall@3 0.7218
cosine_recall@5 0.778
cosine_recall@10 0.8453
cosine_ndcg@10 0.694
cosine_mrr@10 0.6457
cosine_map@100 0.652
dot_accuracy@1 0.5449
dot_accuracy@3 0.7218
dot_accuracy@5 0.778
dot_accuracy@10 0.8453
dot_precision@1 0.5449
dot_precision@3 0.2406
dot_precision@5 0.1556
dot_precision@10 0.0845
dot_recall@1 0.5449
dot_recall@3 0.7218
dot_recall@5 0.778
dot_recall@10 0.8453
dot_ndcg@10 0.694
dot_mrr@10 0.6457
dot_map@100 0.652

Training Details

Training Dataset

Unnamed Dataset

  • Size: 41,881 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 10 tokens
    • mean: 24.26 tokens
    • max: 50 tokens
    • min: 15 tokens
    • mean: 237.12 tokens
    • max: 424 tokens
  • Samples:
    sentence_0 sentence_1
    KDS 10 00 00 설계기준은 어느 나라의 표준인가요? KDS 10 00 00설계기준 Korean Design StandardKDS 10 00 00 : 2021공통설계기준.2021년5월12일개정http://www.kcsc.re.kr
    KDS 10 00 00 설계기준은 최근에 언제 개정되었나요? KDS 10 00 00설계기준 Korean Design StandardKDS 10 00 00 : 2021공통설계기준.2021년5월12일개정http://www.kcsc.re.kr
    KDS 10 10 00 설계총칙 문서는 어떤 분야의 설계 기준을 다루고 있나요? 공통설계기준체계KDS 10 10 00 설계총칙 `21.05
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 15
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss cosine_map@100
0.0115 15 - 0.4930
0.0229 30 - 0.5107
0.0344 45 - 0.5290
0.0458 60 - 0.5474
0.0573 75 - 0.5568
0.0688 90 - 0.5569
0.0802 105 - 0.5483
0.0917 120 - 0.5353
0.1031 135 - 0.5278
0.1146 150 - 0.5300
0.1261 165 - 0.5439
0.1375 180 - 0.5566
0.1490 195 - 0.5671
0.1604 210 - 0.5747
0.1719 225 - 0.5794
0.1833 240 - 0.5870
0.1948 255 - 0.5919
0.2063 270 - 0.5956
0.2177 285 - 0.6004
0.2292 300 - 0.6009
0.2406 315 - 0.6017
0.2521 330 - 0.6084
0.2636 345 - 0.6156
0.2750 360 - 0.6073
0.2865 375 - 0.6096
0.2979 390 - 0.6168
0.3094 405 - 0.6219
0.3209 420 - 0.6208
0.3323 435 - 0.6180
0.3438 450 - 0.6253
0.3552 465 - 0.6225
0.3667 480 - 0.6297
0.3782 495 - 0.6315
0.3820 500 0.5905 -
0.3896 510 - 0.6347
0.4011 525 - 0.6398
0.4125 540 - 0.6462
0.4240 555 - 0.6459
0.4354 570 - 0.6441
0.4469 585 - 0.6359
0.4584 600 - 0.6424
0.4698 615 - 0.6405
0.4813 630 - 0.6340
0.4927 645 - 0.6416
0.5042 660 - 0.6444
0.5157 675 - 0.6381
0.5271 690 - 0.6363
0.5386 705 - 0.6408
0.5500 720 - 0.6414
0.5615 735 - 0.6509
0.5730 750 - 0.6509
0.5844 765 - 0.6516
0.5959 780 - 0.6505
0.6073 795 - 0.6493
0.6188 810 - 0.6476
0.6303 825 - 0.6458
0.6417 840 - 0.6461
0.6532 855 - 0.6538
0.6646 870 - 0.6439
0.6761 885 - 0.6530
0.6875 900 - 0.6432
0.6990 915 - 0.6460
0.7105 930 - 0.6594
0.7219 945 - 0.6650
0.7334 960 - 0.6536
0.7448 975 - 0.6484
0.7563 990 - 0.6426
0.7639 1000 0.086 -
0.7678 1005 - 0.6509
0.7792 1020 - 0.6485
0.7907 1035 - 0.6464
0.8021 1050 - 0.6595
0.8136 1065 - 0.6538
0.8251 1080 - 0.6517
0.8365 1095 - 0.6638
0.8480 1110 - 0.6624
0.8594 1125 - 0.6582
0.8709 1140 - 0.6517
0.8824 1155 - 0.6504
0.8938 1170 - 0.6545
0.9053 1185 - 0.6588
0.9167 1200 - 0.6558
0.9282 1215 - 0.6615
0.9396 1230 - 0.6640
0.9511 1245 - 0.6612
0.9626 1260 - 0.6626
0.9740 1275 - 0.6519
0.9855 1290 - 0.6489
0.9969 1305 - 0.6542
1.0 1309 - 0.6542
1.0084 1320 - 0.6554
1.0199 1335 - 0.6596
1.0313 1350 - 0.6671
1.0428 1365 - 0.6636
1.0542 1380 - 0.6729
1.0657 1395 - 0.6608
1.0772 1410 - 0.6718
1.0886 1425 - 0.6614
1.1001 1440 - 0.6639
1.1115 1455 - 0.6649
1.1230 1470 - 0.6680
1.1345 1485 - 0.6516
1.1459 1500 0.0704 0.6764
1.1574 1515 - 0.6713
1.1688 1530 - 0.6690
1.1803 1545 - 0.6750
1.1917 1560 - 0.6730
1.2032 1575 - 0.6690
1.2147 1590 - 0.6590
1.2261 1605 - 0.6699
1.2376 1620 - 0.6627
1.2490 1635 - 0.6747
1.2605 1650 - 0.6726
1.2720 1665 - 0.6548
1.2834 1680 - 0.6607
1.2949 1695 - 0.6678
1.3063 1710 - 0.6632
1.3178 1725 - 0.6505
1.3293 1740 - 0.6583
1.3407 1755 - 0.6713
1.3522 1770 - 0.6434
1.3636 1785 - 0.6715
1.3751 1800 - 0.6699
1.3866 1815 - 0.6663
1.3980 1830 - 0.6646
1.4095 1845 - 0.6547
1.4209 1860 - 0.6650
1.4324 1875 - 0.6569
1.4439 1890 - 0.6496
1.4553 1905 - 0.6638
1.4668 1920 - 0.6714
1.4782 1935 - 0.6474
1.4897 1950 - 0.6741
1.5011 1965 - 0.6626
1.5126 1980 - 0.6562
1.5241 1995 - 0.6525
1.5279 2000 0.0563 -
1.5355 2010 - 0.6672
1.5470 2025 - 0.6577
1.5584 2040 - 0.6609
1.5699 2055 - 0.6583
1.5814 2070 - 0.6734
1.5928 2085 - 0.6592
1.6043 2100 - 0.6553
1.6157 2115 - 0.6584
1.6272 2130 - 0.6515
1.6387 2145 - 0.6541
1.6501 2160 - 0.6601
1.6616 2175 - 0.6641
1.6730 2190 - 0.6605
1.6845 2205 - 0.6618
1.6960 2220 - 0.6637
1.7074 2235 - 0.6614
1.7189 2250 - 0.6577
1.7303 2265 - 0.6587
1.7418 2280 - 0.6556
1.7532 2295 - 0.6464
1.7647 2310 - 0.6655
1.7762 2325 - 0.6641
1.7876 2340 - 0.6518
1.7991 2355 - 0.6767
1.8105 2370 - 0.6693
1.8220 2385 - 0.6599
1.8335 2400 - 0.6651
1.8449 2415 - 0.6736
1.8564 2430 - 0.6568
1.8678 2445 - 0.6551
1.8793 2460 - 0.6615
1.8908 2475 - 0.6634
1.9022 2490 - 0.6547
1.9099 2500 0.0407 -
1.9137 2505 - 0.6636
1.9251 2520 - 0.6721
1.9366 2535 - 0.6656
1.9481 2550 - 0.6667
1.9595 2565 - 0.6624
1.9710 2580 - 0.6605
1.9824 2595 - 0.6463
1.9939 2610 - 0.6723
2.0 2618 - 0.6774
2.0053 2625 - 0.6737
2.0168 2640 - 0.6717
2.0283 2655 - 0.6728
2.0397 2670 - 0.6665
2.0512 2685 - 0.6725
2.0626 2700 - 0.6606
2.0741 2715 - 0.6644
2.0856 2730 - 0.6708
2.0970 2745 - 0.6606
2.1085 2760 - 0.6699
2.1199 2775 - 0.6730
2.1314 2790 - 0.6671
2.1429 2805 - 0.6669
2.1543 2820 - 0.6760
2.1658 2835 - 0.6710
2.1772 2850 - 0.6584
2.1887 2865 - 0.6749
2.2002 2880 - 0.6680
2.2116 2895 - 0.6741
2.2231 2910 - 0.6693
2.2345 2925 - 0.6634
2.2460 2940 - 0.6585
2.2574 2955 - 0.6669
2.2689 2970 - 0.6737
2.2804 2985 - 0.6592
2.2918 3000 0.0345 0.6662
2.3033 3015 - 0.6731
2.3147 3030 - 0.6670
2.3262 3045 - 0.6604
2.3377 3060 - 0.6682
2.3491 3075 - 0.6610
2.3606 3090 - 0.6683
2.3720 3105 - 0.6785
2.3835 3120 - 0.6662
2.3950 3135 - 0.6603
2.4064 3150 - 0.6652
2.4179 3165 - 0.6604
2.4293 3180 - 0.6665
2.4408 3195 - 0.6630
2.4523 3210 - 0.6512
2.4637 3225 - 0.6625
2.4752 3240 - 0.6559
2.4866 3255 - 0.6612
2.4981 3270 - 0.6696
2.5095 3285 - 0.6558
2.5210 3300 - 0.6530
2.5325 3315 - 0.6571
2.5439 3330 - 0.6609
2.5554 3345 - 0.6587
2.5668 3360 - 0.6687
2.5783 3375 - 0.6630
2.5898 3390 - 0.6706
2.6012 3405 - 0.6504
2.6127 3420 - 0.6652
2.6241 3435 - 0.6718
2.6356 3450 - 0.6717
2.6471 3465 - 0.6604
2.6585 3480 - 0.6554
2.6700 3495 - 0.6566
2.6738 3500 0.0254 -
2.6814 3510 - 0.6603
2.6929 3525 - 0.6765
2.7044 3540 - 0.6709
2.7158 3555 - 0.6663
2.7273 3570 - 0.6617
2.7387 3585 - 0.6595
2.7502 3600 - 0.6613
2.7617 3615 - 0.6581
2.7731 3630 - 0.6727
2.7846 3645 - 0.6603
2.7960 3660 - 0.6587
2.8075 3675 - 0.6703
2.8189 3690 - 0.6708
2.8304 3705 - 0.6673
2.8419 3720 - 0.6673
2.8533 3735 - 0.6766
2.8648 3750 - 0.6654
2.8762 3765 - 0.6568
2.8877 3780 - 0.6606
2.8992 3795 - 0.6522
2.9106 3810 - 0.6550
2.9221 3825 - 0.6773
2.9335 3840 - 0.6714
2.9450 3855 - 0.6721
2.9565 3870 - 0.6667
2.9679 3885 - 0.6639
2.9794 3900 - 0.6674
2.9908 3915 - 0.6626
3.0 3927 - 0.6654
3.0023 3930 - 0.6667
3.0138 3945 - 0.6707
3.0252 3960 - 0.6687
3.0367 3975 - 0.6731
3.0481 3990 - 0.6771
3.0558 4000 0.0198 -
3.0596 4005 - 0.6792
3.0710 4020 - 0.6672
3.0825 4035 - 0.6714
3.0940 4050 - 0.6707
3.1054 4065 - 0.6688
3.1169 4080 - 0.6838
3.1283 4095 - 0.6718
3.1398 4110 - 0.6595
3.1513 4125 - 0.6741
3.1627 4140 - 0.6737
3.1742 4155 - 0.6731
3.1856 4170 - 0.6700
3.1971 4185 - 0.6748
3.2086 4200 - 0.6746
3.2200 4215 - 0.6716
3.2315 4230 - 0.6755
3.2429 4245 - 0.6700
3.2544 4260 - 0.6652
3.2659 4275 - 0.6700
3.2773 4290 - 0.6724
3.2888 4305 - 0.6643
3.3002 4320 - 0.6737
3.3117 4335 - 0.6756
3.3231 4350 - 0.6708
3.3346 4365 - 0.6682
3.3461 4380 - 0.6788
3.3575 4395 - 0.6732
3.3690 4410 - 0.6753
3.3804 4425 - 0.6803
3.3919 4440 - 0.6738
3.4034 4455 - 0.6732
3.4148 4470 - 0.6701
3.4263 4485 - 0.6668
3.4377 4500 0.0185 0.6700
3.4492 4515 - 0.6633
3.4607 4530 - 0.6696
3.4721 4545 - 0.6822
3.4836 4560 - 0.6815
3.4950 4575 - 0.6717
3.5065 4590 - 0.6590
3.5180 4605 - 0.6560
3.5294 4620 - 0.6660
3.5409 4635 - 0.6698
3.5523 4650 - 0.6660
3.5638 4665 - 0.6638
3.5752 4680 - 0.6696
3.5867 4695 - 0.6639
3.5982 4710 - 0.6666
3.6096 4725 - 0.6626
3.6211 4740 - 0.6691
3.6325 4755 - 0.6648
3.6440 4770 - 0.6619
3.6555 4785 - 0.6640
3.6669 4800 - 0.6667
3.6784 4815 - 0.6670
3.6898 4830 - 0.6704
3.7013 4845 - 0.6591
3.7128 4860 - 0.6658
3.7242 4875 - 0.6597
3.7357 4890 - 0.6629
3.7471 4905 - 0.6615
3.7586 4920 - 0.6519
3.7701 4935 - 0.6557
3.7815 4950 - 0.6668
3.7930 4965 - 0.6587
3.8044 4980 - 0.6653
3.8159 4995 - 0.6683
3.8197 5000 0.0165 -
3.8273 5010 - 0.6671
3.8388 5025 - 0.6671
3.8503 5040 - 0.6709
3.8617 5055 - 0.6708
3.8732 5070 - 0.6633
3.8846 5085 - 0.6597
3.8961 5100 - 0.6590
3.9076 5115 - 0.6577
3.9190 5130 - 0.6607
3.9305 5145 - 0.6674
3.9419 5160 - 0.6647
3.9534 5175 - 0.6609
3.9649 5190 - 0.6657
3.9763 5205 - 0.6576
3.9878 5220 - 0.6624
3.9992 5235 - 0.6612
4.0 5236 - 0.6611
4.0107 5250 - 0.6639
4.0222 5265 - 0.6735
4.0336 5280 - 0.6779
4.0451 5295 - 0.6802
4.0565 5310 - 0.6761
4.0680 5325 - 0.6718
4.0794 5340 - 0.6678
4.0909 5355 - 0.6726
4.1024 5370 - 0.6733
4.1138 5385 - 0.6756
4.1253 5400 - 0.6787
4.1367 5415 - 0.6676
4.1482 5430 - 0.6689
4.1597 5445 - 0.6674
4.1711 5460 - 0.6667
4.1826 5475 - 0.6773
4.1940 5490 - 0.6780
4.2017 5500 0.013 -
4.2055 5505 - 0.6732
4.2170 5520 - 0.6697
4.2284 5535 - 0.6683
4.2399 5550 - 0.6717
4.2513 5565 - 0.6692
4.2628 5580 - 0.6606
4.2743 5595 - 0.6621
4.2857 5610 - 0.6679
4.2972 5625 - 0.6691
4.3086 5640 - 0.6798
4.3201 5655 - 0.6765
4.3316 5670 - 0.6658
4.3430 5685 - 0.6756
4.3545 5700 - 0.6713
4.3659 5715 - 0.6721
4.3774 5730 - 0.6776
4.3888 5745 - 0.6747
4.4003 5760 - 0.6639
4.4118 5775 - 0.6755
4.4232 5790 - 0.6719
4.4347 5805 - 0.6670
4.4461 5820 - 0.6615
4.4576 5835 - 0.6556
4.4691 5850 - 0.6584
4.4805 5865 - 0.6575
4.4920 5880 - 0.6659
4.5034 5895 - 0.6642
4.5149 5910 - 0.6670
4.5264 5925 - 0.6619
4.5378 5940 - 0.6619
4.5493 5955 - 0.6687
4.5607 5970 - 0.6656
4.5722 5985 - 0.6661
4.5837 6000 0.015 0.6657
4.5951 6015 - 0.6635
4.6066 6030 - 0.6608
4.6180 6045 - 0.6634
4.6295 6060 - 0.6713
4.6409 6075 - 0.6649
4.6524 6090 - 0.6555
4.6639 6105 - 0.6576
4.6753 6120 - 0.6627
4.6868 6135 - 0.6669
4.6982 6150 - 0.6675
4.7097 6165 - 0.6561
4.7212 6180 - 0.6535
4.7326 6195 - 0.6604
4.7441 6210 - 0.6638
4.7555 6225 - 0.6621
4.7670 6240 - 0.6548
4.7785 6255 - 0.6577
4.7899 6270 - 0.6478
4.8014 6285 - 0.6571
4.8128 6300 - 0.6634
4.8243 6315 - 0.6637
4.8358 6330 - 0.6606
4.8472 6345 - 0.6706
4.8587 6360 - 0.6695
4.8701 6375 - 0.6690
4.8816 6390 - 0.6654
4.8930 6405 - 0.6551
4.9045 6420 - 0.6537
4.9160 6435 - 0.6605
4.9274 6450 - 0.6526
4.9389 6465 - 0.6743
4.9503 6480 - 0.6738
4.9618 6495 - 0.6576
4.9656 6500 0.0115 -
4.9733 6510 - 0.6542
4.9847 6525 - 0.6545
4.9962 6540 - 0.6605
5.0 6545 - 0.6599
5.0076 6555 - 0.6616
5.0191 6570 - 0.6657
5.0306 6585 - 0.6644
5.0420 6600 - 0.6680
5.0535 6615 - 0.6716
5.0649 6630 - 0.6737
5.0764 6645 - 0.6703
5.0879 6660 - 0.6693
5.0993 6675 - 0.6658
5.1108 6690 - 0.6630
5.1222 6705 - 0.6652
5.1337 6720 - 0.6672
5.1451 6735 - 0.6647
5.1566 6750 - 0.6707
5.1681 6765 - 0.6672
5.1795 6780 - 0.6588
5.1910 6795 - 0.6606
5.2024 6810 - 0.6689
5.2139 6825 - 0.6695
5.2254 6840 - 0.6693
5.2368 6855 - 0.6729
5.2483 6870 - 0.6711
5.2597 6885 - 0.6656
5.2712 6900 - 0.6556
5.2827 6915 - 0.6541
5.2941 6930 - 0.6702
5.3056 6945 - 0.6734
5.3170 6960 - 0.6704
5.3285 6975 - 0.6671
5.3400 6990 - 0.6645
5.3476 7000 0.0119 -
5.3514 7005 - 0.6719
5.3629 7020 - 0.6710
5.3743 7035 - 0.6666
5.3858 7050 - 0.6699
5.3972 7065 - 0.6728
5.4087 7080 - 0.6735
5.4202 7095 - 0.6700
5.4316 7110 - 0.6666
5.4431 7125 - 0.6650
5.4545 7140 - 0.6603
5.4660 7155 - 0.6573
5.4775 7170 - 0.6656
5.4889 7185 - 0.6672
5.5004 7200 - 0.6606
5.5118 7215 - 0.6623
5.5233 7230 - 0.6628
5.5348 7245 - 0.6602
5.5462 7260 - 0.6628
5.5577 7275 - 0.6642
5.5691 7290 - 0.6675
5.5806 7305 - 0.6618
5.5921 7320 - 0.6619
5.6035 7335 - 0.6603
5.6150 7350 - 0.6657
5.6264 7365 - 0.6709
5.6379 7380 - 0.6718
5.6494 7395 - 0.6640
5.6608 7410 - 0.6588
5.6723 7425 - 0.6664
5.6837 7440 - 0.6685
5.6952 7455 - 0.6651
5.7066 7470 - 0.6692
5.7181 7485 - 0.6687
5.7296 7500 0.0114 0.6551
5.7410 7515 - 0.6559
5.7525 7530 - 0.6590
5.7639 7545 - 0.6576
5.7754 7560 - 0.6545
5.7869 7575 - 0.6555
5.7983 7590 - 0.6600
5.8098 7605 - 0.6611
5.8212 7620 - 0.6641
5.8327 7635 - 0.6579
5.8442 7650 - 0.6669
5.8556 7665 - 0.6711
5.8671 7680 - 0.6661
5.8785 7695 - 0.6579
5.8900 7710 - 0.6527
5.9015 7725 - 0.6539
5.9129 7740 - 0.6476
5.9244 7755 - 0.6663
5.9358 7770 - 0.6705
5.9473 7785 - 0.6634
5.9587 7800 - 0.6641
5.9702 7815 - 0.6565
5.9817 7830 - 0.6552
5.9931 7845 - 0.6540
6.0 7854 - 0.6546
6.0046 7860 - 0.6577
6.0160 7875 - 0.6640
6.0275 7890 - 0.6682
6.0390 7905 - 0.6678
6.0504 7920 - 0.6692
6.0619 7935 - 0.6641
6.0733 7950 - 0.6589
6.0848 7965 - 0.6571
6.0963 7980 - 0.6618
6.1077 7995 - 0.6672
6.1115 8000 0.009 -
6.1192 8010 - 0.6695
6.1306 8025 - 0.6673
6.1421 8040 - 0.6651
6.1536 8055 - 0.6671
6.1650 8070 - 0.6693
6.1765 8085 - 0.6629
6.1879 8100 - 0.6642
6.1994 8115 - 0.6708
6.2108 8130 - 0.6709
6.2223 8145 - 0.6714
6.2338 8160 - 0.6670
6.2452 8175 - 0.6681
6.2567 8190 - 0.6603
6.2681 8205 - 0.6596
6.2796 8220 - 0.6623
6.2911 8235 - 0.6643
6.3025 8250 - 0.6669
6.3140 8265 - 0.6750
6.3254 8280 - 0.6714
6.3369 8295 - 0.6529
6.3484 8310 - 0.6559
6.3598 8325 - 0.6644
6.3713 8340 - 0.6665
6.3827 8355 - 0.6677
6.3942 8370 - 0.6733
6.4057 8385 - 0.6766
6.4171 8400 - 0.6740
6.4286 8415 - 0.6690
6.4400 8430 - 0.6586
6.4515 8445 - 0.6544
6.4629 8460 - 0.6566
6.4744 8475 - 0.6576
6.4859 8490 - 0.6555
6.4935 8500 0.0103 -
6.4973 8505 - 0.6641
6.5088 8520 - 0.6660
6.5202 8535 - 0.6628
6.5317 8550 - 0.6612
6.5432 8565 - 0.6555
6.5546 8580 - 0.6609
6.5661 8595 - 0.6665
6.5775 8610 - 0.6616
6.5890 8625 - 0.6589
6.6005 8640 - 0.6581
6.6119 8655 - 0.6566
6.6234 8670 - 0.6663
6.6348 8685 - 0.6696
6.6463 8700 - 0.6675
6.6578 8715 - 0.6625
6.6692 8730 - 0.6607
6.6807 8745 - 0.6611
6.6921 8760 - 0.6667
6.7036 8775 - 0.6688
6.7150 8790 - 0.6689
6.7265 8805 - 0.6655
6.7380 8820 - 0.6614
6.7494 8835 - 0.6600
6.7609 8850 - 0.6556
6.7723 8865 - 0.6555
6.7838 8880 - 0.6646
6.7953 8895 - 0.6544
6.8067 8910 - 0.6545
6.8182 8925 - 0.6619
6.8296 8940 - 0.6657
6.8411 8955 - 0.6665
6.8526 8970 - 0.6729
6.8640 8985 - 0.6692
6.8755 9000 0.0108 0.6666
6.8869 9015 - 0.6601
6.8984 9030 - 0.6598
6.9099 9045 - 0.6644
6.9213 9060 - 0.6608
6.9328 9075 - 0.6577
6.9442 9090 - 0.6708
6.9557 9105 - 0.6719
6.9672 9120 - 0.6623
6.9786 9135 - 0.6537
6.9901 9150 - 0.6544
7.0 9163 - 0.6556
7.0015 9165 - 0.6545
7.0130 9180 - 0.6542
7.0244 9195 - 0.6608
7.0359 9210 - 0.6618
7.0474 9225 - 0.6619
7.0588 9240 - 0.6620
7.0703 9255 - 0.6640
7.0817 9270 - 0.6603
7.0932 9285 - 0.6583
7.1047 9300 - 0.6602
7.1161 9315 - 0.6616
7.1276 9330 - 0.6564
7.1390 9345 - 0.6568
7.1505 9360 - 0.6620
7.1620 9375 - 0.6683
7.1734 9390 - 0.6624
7.1849 9405 - 0.6546
7.1963 9420 - 0.6565
7.2078 9435 - 0.6594
7.2193 9450 - 0.6620
7.2307 9465 - 0.6624
7.2422 9480 - 0.6649
7.2536 9495 - 0.6649
7.2574 9500 0.0091 -
7.2651 9510 - 0.6605
7.2765 9525 - 0.6595
7.2880 9540 - 0.6559
7.2995 9555 - 0.6618
7.3109 9570 - 0.6637
7.3224 9585 - 0.6711
7.3338 9600 - 0.6633
7.3453 9615 - 0.6584
7.3568 9630 - 0.6576
7.3682 9645 - 0.6617
7.3797 9660 - 0.6641
7.3911 9675 - 0.6662
7.4026 9690 - 0.6660
7.4141 9705 - 0.6673
7.4255 9720 - 0.6669
7.4370 9735 - 0.6611
7.4484 9750 - 0.6574
7.4599 9765 - 0.6543
7.4714 9780 - 0.6572
7.4828 9795 - 0.6594
7.4943 9810 - 0.6615
7.5057 9825 - 0.6530
7.5172 9840 - 0.6547
7.5286 9855 - 0.6598
7.5401 9870 - 0.6629
7.5516 9885 - 0.6623
7.5630 9900 - 0.6611
7.5745 9915 - 0.6568
7.5859 9930 - 0.6580
7.5974 9945 - 0.6640
7.6089 9960 - 0.6594
7.6203 9975 - 0.6601
7.6318 9990 - 0.6630
7.6394 10000 0.0086 -
7.6432 10005 - 0.6676
7.6547 10020 - 0.6668
7.6662 10035 - 0.6689
7.6776 10050 - 0.6674
7.6891 10065 - 0.6615
7.7005 10080 - 0.6633
7.7120 10095 - 0.6588
7.7235 10110 - 0.6542
7.7349 10125 - 0.6568
7.7464 10140 - 0.6573
7.7578 10155 - 0.6595
7.7693 10170 - 0.6606
7.7807 10185 - 0.6590
7.7922 10200 - 0.6505
7.8037 10215 - 0.6562
7.8151 10230 - 0.6666
7.8266 10245 - 0.6685
7.8380 10260 - 0.6633
7.8495 10275 - 0.6645
7.8610 10290 - 0.6757
7.8724 10305 - 0.6737
7.8839 10320 - 0.6679
7.8953 10335 - 0.6594
7.9068 10350 - 0.6520
7.9183 10365 - 0.6543
7.9297 10380 - 0.6599
7.9412 10395 - 0.6595
7.9526 10410 - 0.6575
7.9641 10425 - 0.6568
7.9756 10440 - 0.6541
7.9870 10455 - 0.6527
7.9985 10470 - 0.6554
8.0 10472 - 0.6562
8.0099 10485 - 0.6500
8.0214 10500 0.0068 0.6567
8.0328 10515 - 0.6658
8.0443 10530 - 0.6695
8.0558 10545 - 0.6662
8.0672 10560 - 0.6643
8.0787 10575 - 0.6622
8.0901 10590 - 0.6582
8.1016 10605 - 0.6594
8.1131 10620 - 0.6567
8.1245 10635 - 0.6588
8.1360 10650 - 0.6587
8.1474 10665 - 0.6579
8.1589 10680 - 0.6604
8.1704 10695 - 0.6600
8.1818 10710 - 0.6619
8.1933 10725 - 0.6609
8.2047 10740 - 0.6605
8.2162 10755 - 0.6587
8.2277 10770 - 0.6593
8.2391 10785 - 0.6586
8.2506 10800 - 0.6600
8.2620 10815 - 0.6581
8.2735 10830 - 0.6561
8.2850 10845 - 0.6565
8.2964 10860 - 0.6583
8.3079 10875 - 0.6607
8.3193 10890 - 0.6683
8.3308 10905 - 0.6683
8.3422 10920 - 0.6669
8.3537 10935 - 0.6666
8.3652 10950 - 0.6689
8.3766 10965 - 0.6705
8.3881 10980 - 0.6708
8.3995 10995 - 0.6686
8.4034 11000 0.0087 -
8.4110 11010 - 0.6669
8.4225 11025 - 0.6676
8.4339 11040 - 0.6622
8.4454 11055 - 0.6568
8.4568 11070 - 0.6537
8.4683 11085 - 0.6559
8.4798 11100 - 0.6521
8.4912 11115 - 0.6528
8.5027 11130 - 0.6539
8.5141 11145 - 0.6545
8.5256 11160 - 0.6569
8.5371 11175 - 0.6585
8.5485 11190 - 0.6599
8.5600 11205 - 0.6596
8.5714 11220 - 0.6590
8.5829 11235 - 0.6567
8.5943 11250 - 0.6507
8.6058 11265 - 0.6464
8.6173 11280 - 0.6508
8.6287 11295 - 0.6569
8.6402 11310 - 0.6611
8.6516 11325 - 0.6648
8.6631 11340 - 0.6578
8.6746 11355 - 0.6600
8.6860 11370 - 0.6642
8.6975 11385 - 0.6664
8.7089 11400 - 0.6628
8.7204 11415 - 0.6645
8.7319 11430 - 0.6586
8.7433 11445 - 0.6585
8.7548 11460 - 0.6538
8.7662 11475 - 0.6520
8.7777 11490 - 0.6523
8.7853 11500 0.0081 -
8.7892 11505 - 0.6480
8.8006 11520 - 0.6465
8.8121 11535 - 0.6505
8.8235 11550 - 0.6533
8.8350 11565 - 0.6552
8.8464 11580 - 0.6573
8.8579 11595 - 0.6596
8.8694 11610 - 0.6593
8.8808 11625 - 0.6583
8.8923 11640 - 0.6537
8.9037 11655 - 0.6493
8.9152 11670 - 0.6499
8.9267 11685 - 0.6507
8.9381 11700 - 0.6539
8.9496 11715 - 0.6610
8.9610 11730 - 0.6593
8.9725 11745 - 0.6566
8.9840 11760 - 0.6548
8.9954 11775 - 0.6571
9.0 11781 - 0.6563
9.0069 11790 - 0.6548
9.0183 11805 - 0.6573
9.0298 11820 - 0.6635
9.0413 11835 - 0.6617
9.0527 11850 - 0.6571
9.0642 11865 - 0.6529
9.0756 11880 - 0.6555
9.0871 11895 - 0.6521
9.0985 11910 - 0.6523
9.1100 11925 - 0.6593
9.1215 11940 - 0.6623
9.1329 11955 - 0.6611
9.1444 11970 - 0.6587
9.1558 11985 - 0.6618
9.1673 12000 0.0066 0.6591
9.1788 12015 - 0.6572
9.1902 12030 - 0.6543
9.2017 12045 - 0.6576
9.2131 12060 - 0.6543
9.2246 12075 - 0.6571
9.2361 12090 - 0.6517
9.2475 12105 - 0.6489
9.2590 12120 - 0.6464
9.2704 12135 - 0.6501
9.2819 12150 - 0.6500
9.2934 12165 - 0.6538
9.3048 12180 - 0.6577
9.3163 12195 - 0.6590
9.3277 12210 - 0.6643
9.3392 12225 - 0.6622
9.3506 12240 - 0.6575
9.3621 12255 - 0.6578
9.3736 12270 - 0.6646
9.3850 12285 - 0.6649
9.3965 12300 - 0.6632
9.4079 12315 - 0.6626
9.4194 12330 - 0.6665
9.4309 12345 - 0.6689
9.4423 12360 - 0.6618
9.4538 12375 - 0.6548
9.4652 12390 - 0.6523
9.4767 12405 - 0.6578
9.4882 12420 - 0.6552
9.4996 12435 - 0.6553
9.5111 12450 - 0.6516
9.5225 12465 - 0.6537
9.5340 12480 - 0.6581
9.5455 12495 - 0.6575
9.5493 12500 0.0073 -
9.5569 12510 - 0.6578
9.5684 12525 - 0.6559
9.5798 12540 - 0.6517
9.5913 12555 - 0.6499
9.6028 12570 - 0.6497
9.6142 12585 - 0.6478
9.6257 12600 - 0.6544
9.6371 12615 - 0.6586
9.6486 12630 - 0.6603
9.6600 12645 - 0.6577
9.6715 12660 - 0.6561
9.6830 12675 - 0.6539
9.6944 12690 - 0.6511
9.7059 12705 - 0.6489
9.7173 12720 - 0.6554
9.7288 12735 - 0.6572
9.7403 12750 - 0.6559
9.7517 12765 - 0.6536
9.7632 12780 - 0.6488
9.7746 12795 - 0.6537
9.7861 12810 - 0.6554
9.7976 12825 - 0.6554
9.8090 12840 - 0.6523
9.8205 12855 - 0.6531
9.8319 12870 - 0.6561
9.8434 12885 - 0.6557
9.8549 12900 - 0.6559
9.8663 12915 - 0.6565
9.8778 12930 - 0.6606
9.8892 12945 - 0.6586
9.9007 12960 - 0.6540
9.9121 12975 - 0.6524
9.9236 12990 - 0.6534
9.9312 13000 0.0058 -
9.9351 13005 - 0.6532
9.9465 13020 - 0.6524
9.9580 13035 - 0.6566
9.9694 13050 - 0.6578
9.9809 13065 - 0.6558
9.9924 13080 - 0.6556
10.0 13090 - 0.6550
10.0038 13095 - 0.6534
10.0153 13110 - 0.6534
10.0267 13125 - 0.6556
10.0382 13140 - 0.6563
10.0497 13155 - 0.6549
10.0611 13170 - 0.6574
10.0726 13185 - 0.6546
10.0840 13200 - 0.6546
10.0955 13215 - 0.6512
10.1070 13230 - 0.6561
10.1184 13245 - 0.6593
10.1299 13260 - 0.6572
10.1413 13275 - 0.6538
10.1528 13290 - 0.6525
10.1642 13305 - 0.6543
10.1757 13320 - 0.6576
10.1872 13335 - 0.6598
10.1986 13350 - 0.6608
10.2101 13365 - 0.6602
10.2215 13380 - 0.6623
10.2330 13395 - 0.6615
10.2445 13410 - 0.6549
10.2559 13425 - 0.6549
10.2674 13440 - 0.6557
10.2788 13455 - 0.6559
10.2903 13470 - 0.6557
10.3018 13485 - 0.6564
10.3132 13500 0.0069 0.6590
10.3247 13515 - 0.6605
10.3361 13530 - 0.6600
10.3476 13545 - 0.6600
10.3591 13560 - 0.6583
10.3705 13575 - 0.6568
10.3820 13590 - 0.6577
10.3934 13605 - 0.6592
10.4049 13620 - 0.6602
10.4163 13635 - 0.6592
10.4278 13650 - 0.6596
10.4393 13665 - 0.6596
10.4507 13680 - 0.6592
10.4622 13695 - 0.6556
10.4736 13710 - 0.6529
10.4851 13725 - 0.6509
10.4966 13740 - 0.6530
10.5080 13755 - 0.6480
10.5195 13770 - 0.6462
10.5309 13785 - 0.6487
10.5424 13800 - 0.6536
10.5539 13815 - 0.6595
10.5653 13830 - 0.6597
10.5768 13845 - 0.6563
10.5882 13860 - 0.6547
10.5997 13875 - 0.6511
10.6112 13890 - 0.6501
10.6226 13905 - 0.6516
10.6341 13920 - 0.6531
10.6455 13935 - 0.6559
10.6570 13950 - 0.6541
10.6684 13965 - 0.6553
10.6799 13980 - 0.6608
10.6914 13995 - 0.6593
10.6952 14000 0.0066 -
10.7028 14010 - 0.6547
10.7143 14025 - 0.6512
10.7257 14040 - 0.6505
10.7372 14055 - 0.6547
10.7487 14070 - 0.6572
10.7601 14085 - 0.6564
10.7716 14100 - 0.6552
10.7830 14115 - 0.6528
10.7945 14130 - 0.6505
10.8060 14145 - 0.6485
10.8174 14160 - 0.6509
10.8289 14175 - 0.6525
10.8403 14190 - 0.6533
10.8518 14205 - 0.6542
10.8633 14220 - 0.6572
10.8747 14235 - 0.6584
10.8862 14250 - 0.6582
10.8976 14265 - 0.6566
10.9091 14280 - 0.6563
10.9206 14295 - 0.6540
10.9320 14310 - 0.6537
10.9435 14325 - 0.6527
10.9549 14340 - 0.6563
10.9664 14355 - 0.6560
10.9778 14370 - 0.6543
10.9893 14385 - 0.6536
11.0 14399 - 0.6542
11.0008 14400 - 0.6541
11.0122 14415 - 0.6532
11.0237 14430 - 0.6557
11.0351 14445 - 0.6565
11.0466 14460 - 0.6611
11.0581 14475 - 0.6599
11.0695 14490 - 0.6587
11.0772 14500 0.0049 -
11.0810 14505 - 0.6595
11.0924 14520 - 0.6561
11.1039 14535 - 0.6548
11.1154 14550 - 0.6558
11.1268 14565 - 0.6581
11.1383 14580 - 0.6553
11.1497 14595 - 0.6568
11.1612 14610 - 0.6576
11.1727 14625 - 0.6547
11.1841 14640 - 0.6513
11.1956 14655 - 0.6516
11.2070 14670 - 0.6547
11.2185 14685 - 0.6561
11.2299 14700 - 0.6568
11.2414 14715 - 0.6539
11.2529 14730 - 0.6524
11.2643 14745 - 0.6509
11.2758 14760 - 0.6536
11.2872 14775 - 0.6560
11.2987 14790 - 0.6560
11.3102 14805 - 0.6539
11.3216 14820 - 0.6560
11.3331 14835 - 0.6577
11.3445 14850 - 0.6569
11.3560 14865 - 0.6552
11.3675 14880 - 0.6533
11.3789 14895 - 0.6546
11.3904 14910 - 0.6543
11.4018 14925 - 0.6550
11.4133 14940 - 0.6576
11.4248 14955 - 0.6581
11.4362 14970 - 0.6592
11.4477 14985 - 0.6582
11.4591 15000 0.0068 0.6575
11.4706 15015 - 0.6580
11.4820 15030 - 0.6520
11.4935 15045 - 0.6545
11.5050 15060 - 0.6533
11.5164 15075 - 0.6490
11.5279 15090 - 0.6493
11.5393 15105 - 0.6492
11.5508 15120 - 0.6511
11.5623 15135 - 0.6522
11.5737 15150 - 0.6531
11.5852 15165 - 0.6538
11.5966 15180 - 0.6524
11.6081 15195 - 0.6512
11.6196 15210 - 0.6518
11.6310 15225 - 0.6535
11.6425 15240 - 0.6546
11.6539 15255 - 0.6539
11.6654 15270 - 0.6519
11.6769 15285 - 0.6513
11.6883 15300 - 0.6543
11.6998 15315 - 0.6527
11.7112 15330 - 0.6537
11.7227 15345 - 0.6531
11.7341 15360 - 0.6439
11.7456 15375 - 0.6435
11.7571 15390 - 0.6501
11.7685 15405 - 0.6510
11.7800 15420 - 0.6502
11.7914 15435 - 0.6497
11.8029 15450 - 0.6505
11.8144 15465 - 0.6516
11.8258 15480 - 0.6534
11.8373 15495 - 0.6554
11.8411 15500 0.0059 -
11.8487 15510 - 0.6570
11.8602 15525 - 0.6576
11.8717 15540 - 0.6576
11.8831 15555 - 0.6573
11.8946 15570 - 0.6555
11.9060 15585 - 0.6543
11.9175 15600 - 0.6525
11.9290 15615 - 0.6516
11.9404 15630 - 0.6510
11.9519 15645 - 0.6527
11.9633 15660 - 0.6535
11.9748 15675 - 0.6567
11.9862 15690 - 0.6604
11.9977 15705 - 0.6592
12.0 15708 - 0.6589
12.0092 15720 - 0.6571
12.0206 15735 - 0.6569
12.0321 15750 - 0.6577
12.0435 15765 - 0.6593
12.0550 15780 - 0.6582
12.0665 15795 - 0.6577
12.0779 15810 - 0.6581
12.0894 15825 - 0.6586
12.1008 15840 - 0.6572
12.1123 15855 - 0.6570
12.1238 15870 - 0.6564
12.1352 15885 - 0.6573
12.1467 15900 - 0.6583
12.1581 15915 - 0.6599
12.1696 15930 - 0.6591
12.1811 15945 - 0.6564
12.1925 15960 - 0.6546
12.2040 15975 - 0.6558
12.2154 15990 - 0.6590
12.2231 16000 0.0055 -
12.2269 16005 - 0.6586
12.2383 16020 - 0.6577
12.2498 16035 - 0.6582
12.2613 16050 - 0.6572
12.2727 16065 - 0.6565
12.2842 16080 - 0.6568
12.2956 16095 - 0.6550
12.3071 16110 - 0.6566
12.3186 16125 - 0.6569
12.3300 16140 - 0.6580
12.3415 16155 - 0.6589
12.3529 16170 - 0.6604
12.3644 16185 - 0.6602
12.3759 16200 - 0.6605
12.3873 16215 - 0.6598
12.3988 16230 - 0.6583
12.4102 16245 - 0.6582
12.4217 16260 - 0.6574
12.4332 16275 - 0.6589
12.4446 16290 - 0.6575
12.4561 16305 - 0.6578
12.4675 16320 - 0.6576
12.4790 16335 - 0.6565
12.4905 16350 - 0.6551
12.5019 16365 - 0.6526
12.5134 16380 - 0.6536
12.5248 16395 - 0.6540
12.5363 16410 - 0.6545
12.5477 16425 - 0.6548
12.5592 16440 - 0.6563
12.5707 16455 - 0.6552
12.5821 16470 - 0.6561
12.5936 16485 - 0.6567
12.6050 16500 0.0058 0.6550
12.6165 16515 - 0.6551
12.6280 16530 - 0.6560
12.6394 16545 - 0.6573
12.6509 16560 - 0.6578
12.6623 16575 - 0.6568
12.6738 16590 - 0.6551
12.6853 16605 - 0.6539
12.6967 16620 - 0.6532
12.7082 16635 - 0.6531
12.7196 16650 - 0.6526
12.7311 16665 - 0.6500
12.7426 16680 - 0.6503
12.7540 16695 - 0.6524
12.7655 16710 - 0.6539
12.7769 16725 - 0.6535
12.7884 16740 - 0.6539
12.7998 16755 - 0.6534
12.8113 16770 - 0.6526
12.8228 16785 - 0.6540
12.8342 16800 - 0.6537
12.8457 16815 - 0.6549
12.8571 16830 - 0.6562
12.8686 16845 - 0.6560
12.8801 16860 - 0.6575
12.8915 16875 - 0.6581
12.9030 16890 - 0.6564
12.9144 16905 - 0.6547
12.9259 16920 - 0.6553
12.9374 16935 - 0.6550
12.9488 16950 - 0.6545
12.9603 16965 - 0.6530
12.9717 16980 - 0.6535
12.9832 16995 - 0.6527
12.9870 17000 0.0043 -
12.9947 17010 - 0.6529
13.0 17017 - 0.6531
13.0061 17025 - 0.6536
13.0176 17040 - 0.6536
13.0290 17055 - 0.6553
13.0405 17070 - 0.6565
13.0519 17085 - 0.6558
13.0634 17100 - 0.6563
13.0749 17115 - 0.6550
13.0863 17130 - 0.6544
13.0978 17145 - 0.6530
13.1092 17160 - 0.6527
13.1207 17175 - 0.6563
13.1322 17190 - 0.6571
13.1436 17205 - 0.6573
13.1551 17220 - 0.6556
13.1665 17235 - 0.6541
13.1780 17250 - 0.6536
13.1895 17265 - 0.6533
13.2009 17280 - 0.6533
13.2124 17295 - 0.6531
13.2238 17310 - 0.6542
13.2353 17325 - 0.6539
13.2468 17340 - 0.6543
13.2582 17355 - 0.6547
13.2697 17370 - 0.6563
13.2811 17385 - 0.6566
13.2926 17400 - 0.6553
13.3040 17415 - 0.6541
13.3155 17430 - 0.6542
13.3270 17445 - 0.6558
13.3384 17460 - 0.6552
13.3499 17475 - 0.6554
13.3613 17490 - 0.6548
13.3690 17500 0.0058 -
13.3728 17505 - 0.6543
13.3843 17520 - 0.6551
13.3957 17535 - 0.6549
13.4072 17550 - 0.6550
13.4186 17565 - 0.6550
13.4301 17580 - 0.6567
13.4416 17595 - 0.6583
13.4530 17610 - 0.6577
13.4645 17625 - 0.6577
13.4759 17640 - 0.6577
13.4874 17655 - 0.6585
13.4989 17670 - 0.6570
13.5103 17685 - 0.6546
13.5218 17700 - 0.6541
13.5332 17715 - 0.6538
13.5447 17730 - 0.6553
13.5561 17745 - 0.6558
13.5676 17760 - 0.6555
13.5791 17775 - 0.6548
13.5905 17790 - 0.6547
13.6020 17805 - 0.6539
13.6134 17820 - 0.6539
13.6249 17835 - 0.6545
13.6364 17850 - 0.6544
13.6478 17865 - 0.6547
13.6593 17880 - 0.6534
13.6707 17895 - 0.6534
13.6822 17910 - 0.6527
13.6937 17925 - 0.6532
13.7051 17940 - 0.6544
13.7166 17955 - 0.6531
13.7280 17970 - 0.6531
13.7395 17985 - 0.6519
13.7510 18000 0.0048 0.6521
13.7624 18015 - 0.6493
13.7739 18030 - 0.6472
13.7853 18045 - 0.6481
13.7968 18060 - 0.6485
13.8083 18075 - 0.6476
13.8197 18090 - 0.6480
13.8312 18105 - 0.6492
13.8426 18120 - 0.6510
13.8541 18135 - 0.6514
13.8655 18150 - 0.6518
13.8770 18165 - 0.6520
13.8885 18180 - 0.6507
13.8999 18195 - 0.6506
13.9114 18210 - 0.6504
13.9228 18225 - 0.6500
13.9343 18240 - 0.6503
13.9458 18255 - 0.6496
13.9572 18270 - 0.6503
13.9687 18285 - 0.6492
13.9801 18300 - 0.6495
13.9916 18315 - 0.6504
14.0 18326 - 0.6503
14.0031 18330 - 0.6498
14.0145 18345 - 0.6499
14.0260 18360 - 0.6500
14.0374 18375 - 0.6507
14.0489 18390 - 0.6513
14.0604 18405 - 0.6511
14.0718 18420 - 0.6514
14.0833 18435 - 0.6519
14.0947 18450 - 0.6516
14.1062 18465 - 0.6522
14.1176 18480 - 0.6527
14.1291 18495 - 0.6524
14.1329 18500 0.0045 -
14.1406 18510 - 0.6527
14.1520 18525 - 0.6532
14.1635 18540 - 0.6530
14.1749 18555 - 0.6531
14.1864 18570 - 0.6531
14.1979 18585 - 0.6527
14.2093 18600 - 0.6535
14.2208 18615 - 0.6536
14.2322 18630 - 0.6531
14.2437 18645 - 0.6527
14.2552 18660 - 0.6532
14.2666 18675 - 0.6535
14.2781 18690 - 0.6535
14.2895 18705 - 0.6535
14.3010 18720 - 0.6535
14.3125 18735 - 0.6537
14.3239 18750 - 0.6536
14.3354 18765 - 0.6534
14.3468 18780 - 0.6547
14.3583 18795 - 0.6541
14.3697 18810 - 0.6539
14.3812 18825 - 0.6548
14.3927 18840 - 0.6547
14.4041 18855 - 0.6548
14.4156 18870 - 0.6546
14.4270 18885 - 0.6544
14.4385 18900 - 0.6543
14.4500 18915 - 0.6541
14.4614 18930 - 0.6537
14.4729 18945 - 0.6536
14.4843 18960 - 0.6533
14.4958 18975 - 0.6531
14.5073 18990 - 0.6517
14.5149 19000 0.0055 -
14.5187 19005 - 0.6517
14.5302 19020 - 0.6521
14.5416 19035 - 0.6522
14.5531 19050 - 0.6528
14.5646 19065 - 0.6524
14.5760 19080 - 0.6529
14.5875 19095 - 0.6529
14.5989 19110 - 0.6525
14.6104 19125 - 0.6523
14.6218 19140 - 0.6524
14.6333 19155 - 0.6528
14.6448 19170 - 0.6526
14.6562 19185 - 0.6530
14.6677 19200 - 0.6532
14.6791 19215 - 0.6532
14.6906 19230 - 0.6532
14.7021 19245 - 0.6533
14.7135 19260 - 0.6526
14.7250 19275 - 0.6522
14.7364 19290 - 0.6520
14.7479 19305 - 0.6522
14.7594 19320 - 0.6522
14.7708 19335 - 0.6522
14.7823 19350 - 0.6521
14.7937 19365 - 0.6521
14.8052 19380 - 0.6521
14.8167 19395 - 0.6521
14.8281 19410 - 0.6522
14.8396 19425 - 0.6523
14.8510 19440 - 0.6523
14.8625 19455 - 0.6523
14.8739 19470 - 0.6521
14.8854 19485 - 0.6522
14.8969 19500 0.0039 0.6522
14.9083 19515 - 0.6521
14.9198 19530 - 0.6523
14.9312 19545 - 0.6522
14.9427 19560 - 0.6521
14.9542 19575 - 0.6520
14.9656 19590 - 0.6521
14.9771 19605 - 0.6520
14.9885 19620 - 0.6520
15.0 19635 - 0.6520

Framework Versions

  • Python: 3.11.0rc1
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.1
  • PyTorch: 2.2.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
40
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jerryyun/kicon_e5large_15_v1

Finetuned
(2)
this model

Evaluation results