biobert-all-deep / README.md
jialinselenasong's picture
Training complete
efef236 verified
metadata
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: biobert-all-deep
    results: []

biobert-all-deep

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8095
  • Precision: 0.6591
  • Recall: 0.7116
  • F1: 0.6843
  • Accuracy: 0.8236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 363 0.5639 0.5973 0.6865 0.6388 0.8149
0.6983 2.0 726 0.5410 0.6263 0.7052 0.6634 0.8238
0.3859 3.0 1089 0.5557 0.6544 0.7011 0.6769 0.8245
0.3859 4.0 1452 0.5803 0.6579 0.7064 0.6813 0.8276
0.276 5.0 1815 0.6461 0.6598 0.7105 0.6842 0.8238
0.1944 6.0 2178 0.6995 0.6616 0.7120 0.6859 0.8237
0.1505 7.0 2541 0.7337 0.6563 0.7195 0.6865 0.8253
0.1505 8.0 2904 0.7710 0.6664 0.7120 0.6884 0.8255
0.1178 9.0 3267 0.8030 0.6541 0.7165 0.6838 0.8233
0.1006 10.0 3630 0.8095 0.6591 0.7116 0.6843 0.8236

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1