jilangdi's picture
Add new SentenceTransformer model.
2e08f91 verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10000
  - loss:SoftmaxLoss
base_model: google-bert/bert-base-uncased
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: >-
      A man selling donuts to a customer during a world exhibition event held in
      the city of Angeles
    sentences:
      - The man is doing tricks.
      - A woman drinks her coffee in a small cafe.
      - The building is made of logs.
  - source_sentence: A group of people prepare hot air balloons for takeoff.
    sentences:
      - There are hot air balloons on the ground and air.
      - A man is in an art museum.
      - People watch another person do a trick.
  - source_sentence: Three workers are trimming down trees.
    sentences:
      - The goalie is sleeping at home.
      - There are three workers
      - The girl has brown hair.
  - source_sentence: >-
      Two brown-haired men wearing short-sleeved shirts and shorts are climbing
      stairs.
    sentences:
      - The men have blonde hair.
      - A bicyclist passes an esthetically beautiful building on a sunny day
      - Two men are dancing.
  - source_sentence: A man is sitting in on the side of the street with brass pots.
    sentences:
      - a younger boy looks at his father
      - Children are at the beach.
      - a man does not have brass pots
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 147.28843774992524
  energy_consumed: 0.2758298255748315
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD EPYC 7H12 64-Core Processor
  ram_total_size: 229.14864349365234
  hours_used: 0.351
  hardware_used: 8 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on google-bert/bert-base-uncased
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.47725003430658275
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5475746919034576
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5043805022296893
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.5420702830995872
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.5083739540394052
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.544209699690841
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4458579859528435
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4698642508787034
            name: Spearman Dot
          - type: pearson_max
            value: 0.5083739540394052
            name: Pearson Max
          - type: spearman_max
            value: 0.5475746919034576
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.5320947494943107
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5317279446221387
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5575308236485216
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.5554390408837996
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.55587770863865
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.5535804159700501
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.2787697886285483
            name: Pearson Dot
          - type: spearman_dot
            value: 0.2710358104528421
            name: Spearman Dot
          - type: pearson_max
            value: 0.5575308236485216
            name: Pearson Max
          - type: spearman_max
            value: 0.5554390408837996
            name: Spearman Max
          - type: pearson_cosine
            value: 0.4493844540252116
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4694611677633312
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.4773641092320219
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4763054309792941
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.4796801942910325
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.47774521406648734
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4081600817978359
            name: Pearson Dot
          - type: spearman_dot
            value: 0.3898881150281674
            name: Spearman Dot
          - type: pearson_max
            value: 0.4796801942910325
            name: Pearson Max
          - type: spearman_max
            value: 0.47774521406648734
            name: Spearman Max

SentenceTransformer based on google-bert/bert-base-uncased

This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jilangdi/bert-base-uncased-nli-v1")
# Run inference
sentences = [
    'A man is sitting in on the side of the street with brass pots.',
    'a man does not have brass pots',
    'Children are at the beach.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4773
spearman_cosine 0.5476
pearson_manhattan 0.5044
spearman_manhattan 0.5421
pearson_euclidean 0.5084
spearman_euclidean 0.5442
pearson_dot 0.4459
spearman_dot 0.4699
pearson_max 0.5084
spearman_max 0.5476

Semantic Similarity

Metric Value
pearson_cosine 0.5321
spearman_cosine 0.5317
pearson_manhattan 0.5575
spearman_manhattan 0.5554
pearson_euclidean 0.5559
spearman_euclidean 0.5536
pearson_dot 0.2788
spearman_dot 0.271
pearson_max 0.5575
spearman_max 0.5554

Semantic Similarity

Metric Value
pearson_cosine 0.4494
spearman_cosine 0.4695
pearson_manhattan 0.4774
spearman_manhattan 0.4763
pearson_euclidean 0.4797
spearman_euclidean 0.4777
pearson_dot 0.4082
spearman_dot 0.3899
pearson_max 0.4797
spearman_max 0.4777

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,000 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 17.38 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.7 tokens
    • max: 31 tokens
    • 0: ~33.40%
    • 1: ~33.30%
    • 2: ~33.30%
  • Samples:
    premise hypothesis label
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. 1
    A person on a horse jumps over a broken down airplane. A person is at a diner, ordering an omelette. 2
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 0
  • Loss: SoftmaxLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 18.44 tokens
    • max: 57 tokens
    • min: 5 tokens
    • mean: 10.57 tokens
    • max: 25 tokens
    • 0: ~33.10%
    • 1: ~33.30%
    • 2: ~33.60%
  • Samples:
    premise hypothesis label
    Two women are embracing while holding to go packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. 1
    Two women are embracing while holding to go packages. Two woman are holding packages. 0
    Two women are embracing while holding to go packages. The men are fighting outside a deli. 2
  • Loss: SoftmaxLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - - 0.5931 -
1.0 79 - - - 0.5317
1.2658 100 0.545 0.9351 0.5973 -
2.5316 200 0.5286 0.9535 0.5660 -
3.7975 300 0.3553 1.0364 0.5476 -
5.0 395 - - - 0.4695

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.276 kWh
  • Carbon Emitted: 0.147 kg of CO2
  • Hours Used: 0.351 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 8 x NVIDIA GeForce RTX 3090
  • CPU Model: AMD EPYC 7H12 64-Core Processor
  • RAM Size: 229.15 GB

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}