|
--- |
|
license: apache-2.0 |
|
language: ga |
|
tags: |
|
- generated_from_trainer |
|
- irish |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: electra-base-irish-cased-discriminator-v1-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
args: ga |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5413922859830668 |
|
- name: Recall |
|
type: recall |
|
value: 0.5161434977578475 |
|
- name: F1 |
|
type: f1 |
|
value: 0.5284664830119375 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8419817960026273 |
|
widget: |
|
- text: "Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882." |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# electra-base-irish-cased-discriminator-v1-finetuned-ner |
|
|
|
This model is a fine-tuned version of [DCU-NLP/electra-base-irish-cased-generator-v1](https://huggingface.co/DCU-NLP/electra-base-irish-cased-generator-v1) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6654 |
|
- Precision: 0.5414 |
|
- Recall: 0.5161 |
|
- F1: 0.5285 |
|
- Accuracy: 0.8420 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 63 | 1.3231 | 0.1046 | 0.0417 | 0.0596 | 0.5449 | |
|
| No log | 2.0 | 126 | 0.9710 | 0.3879 | 0.3359 | 0.3600 | 0.7486 | |
|
| No log | 3.0 | 189 | 0.7723 | 0.4713 | 0.4457 | 0.4582 | 0.8152 | |
|
| No log | 4.0 | 252 | 0.6892 | 0.5257 | 0.4910 | 0.5078 | 0.8347 | |
|
| No log | 5.0 | 315 | 0.6654 | 0.5414 | 0.5161 | 0.5285 | 0.8420 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.5 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.10.3 |
|
|