jimregan's picture
Update README.md
6d3d5d8 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-phoneme-timit
    results: []
datasets:
  - timit_asr
language:
  - en

working

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3630
  • Wer: 0.6243
  • Cer: 0.1316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.5325 11.9 1000 3.4897 1.0 0.9266
2.1973 23.81 2000 1.1350 0.8396 0.2403
1.4762 35.71 3000 0.5270 0.6845 0.1563
1.2409 47.62 4000 0.4195 0.6331 0.1403
1.1241 59.52 5000 0.3845 0.6362 0.1379
1.024 71.43 6000 0.3716 0.6321 0.1355
0.9922 83.33 7000 0.3728 0.6290 0.1331
0.9432 95.24 8000 0.3648 0.6170 0.1321
0.9279 107.14 9000 0.3643 0.6248 0.1325
0.9268 119.05 10000 0.3630 0.6243 0.1316

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2