bert-base-uncased-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
2.1028 1.0 291 1.7042
1.6315 2.0 582 1.5080
1.4967 3.0 873 1.3577
1.3956 4.0 1164 1.3385
1.3294 5.0 1455 1.2407
1.2869 6.0 1746 1.3678
1.2329 7.0 2037 1.2954
1.2023 8.0 2328 1.3426
1.1687 9.0 2619 1.2184
1.1435 10.0 2910 1.1783
1.1254 11.0 3201 1.1233
1.1116 12.0 3492 1.1670
1.0869 13.0 3783 1.2120
1.0748 14.0 4074 1.2206
1.0726 15.0 4365 1.2168
1.0610 16.0 4656 1.2311

Framework versions

  • Transformers 5.1.0
  • Pytorch 2.10.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.2
Downloads last month
8
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jin-cheon/bert-base-uncased-issues-128

Finetuned
(6388)
this model