Add transformers.js example code
#6
by
Xenova
HF staff
- opened
README.md
CHANGED
@@ -2,10 +2,11 @@
|
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
language:
|
5 |
-
|
6 |
tags:
|
7 |
-
|
8 |
-
|
|
|
9 |
---
|
10 |
|
11 |
<br><br>
|
@@ -127,6 +128,66 @@ sentence_pairs = [[query, doc] for doc in documents]
|
|
127 |
scores = model.compute_score(sentence_pairs)
|
128 |
```
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
That's it! You can now use the `jina-reranker-v1-tiny-en` model in your projects.
|
131 |
|
132 |
# Evaluation
|
@@ -153,4 +214,4 @@ For more details, please refer to our [benchmarking sheets](https://docs.google.
|
|
153 |
|
154 |
# Contact
|
155 |
|
156 |
-
Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.
|
|
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
language:
|
5 |
+
- en
|
6 |
tags:
|
7 |
+
- reranker
|
8 |
+
- cross-encoder
|
9 |
+
- transformers.js
|
10 |
---
|
11 |
|
12 |
<br><br>
|
|
|
128 |
scores = model.compute_score(sentence_pairs)
|
129 |
```
|
130 |
|
131 |
+
4. You can also use the `transformers.js` library to run the model directly in JavaScript (in-browser, Node.js, Deno, etc.)!
|
132 |
+
|
133 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
134 |
+
```bash
|
135 |
+
npm i @xenova/transformers
|
136 |
+
```
|
137 |
+
|
138 |
+
Then, you can use the following code to interact with the model:
|
139 |
+
```js
|
140 |
+
import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers';
|
141 |
+
|
142 |
+
const model_id = 'jinaai/jina-reranker-v1-tiny-en';
|
143 |
+
const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false });
|
144 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
145 |
+
|
146 |
+
/**
|
147 |
+
* Performs ranking with the CrossEncoder on the given query and documents. Returns a sorted list with the document indices and scores.
|
148 |
+
* @param {string} query A single query
|
149 |
+
* @param {string[]} documents A list of documents
|
150 |
+
* @param {Object} options Options for ranking
|
151 |
+
* @param {number} [options.top_k=undefined] Return the top-k documents. If undefined, all documents are returned.
|
152 |
+
* @param {number} [options.return_documents=false] If true, also returns the documents. If false, only returns the indices and scores.
|
153 |
+
*/
|
154 |
+
async function rank(query, documents, {
|
155 |
+
top_k = undefined,
|
156 |
+
return_documents = false,
|
157 |
+
} = {}) {
|
158 |
+
const inputs = tokenizer(
|
159 |
+
new Array(documents.length).fill(query),
|
160 |
+
{ text_pair: documents, padding: true, truncation: true }
|
161 |
+
)
|
162 |
+
const { logits } = await model(inputs);
|
163 |
+
return logits.sigmoid().tolist()
|
164 |
+
.map(([score], i) => ({
|
165 |
+
corpus_id: i,
|
166 |
+
score,
|
167 |
+
...(return_documents ? { text: documents[i] } : {})
|
168 |
+
})).sort((a, b) => b.score - a.score).slice(0, top_k);
|
169 |
+
}
|
170 |
+
|
171 |
+
// Example usage:
|
172 |
+
const query = "Organic skincare products for sensitive skin"
|
173 |
+
const documents = [
|
174 |
+
"Eco-friendly kitchenware for modern homes",
|
175 |
+
"Biodegradable cleaning supplies for eco-conscious consumers",
|
176 |
+
"Organic cotton baby clothes for sensitive skin",
|
177 |
+
"Natural organic skincare range for sensitive skin",
|
178 |
+
"Tech gadgets for smart homes: 2024 edition",
|
179 |
+
"Sustainable gardening tools and compost solutions",
|
180 |
+
"Sensitive skin-friendly facial cleansers and toners",
|
181 |
+
"Organic food wraps and storage solutions",
|
182 |
+
"All-natural pet food for dogs with allergies",
|
183 |
+
"Yoga mats made from recycled materials",
|
184 |
+
]
|
185 |
+
|
186 |
+
const results = await rank(query, documents, { return_documents: true, top_k: 3 });
|
187 |
+
console.log(results);
|
188 |
+
```
|
189 |
+
|
190 |
+
|
191 |
That's it! You can now use the `jina-reranker-v1-tiny-en` model in your projects.
|
192 |
|
193 |
# Evaluation
|
|
|
214 |
|
215 |
# Contact
|
216 |
|
217 |
+
Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.
|