metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: torgo_tiny_finetune_F03_frozen_encoder
results: []
torgo_tiny_finetune_F03_frozen_encoder
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0487
- Wer: 34.9794
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7886 | 0.85 | 500 | 0.0571 | 14.9520 |
0.0987 | 1.69 | 1000 | 0.0536 | 50.3429 |
0.0695 | 2.54 | 1500 | 0.0480 | 4.3896 |
0.0479 | 3.39 | 2000 | 0.0534 | 7.9561 |
0.0314 | 4.24 | 2500 | 0.0542 | 5.0754 |
0.0239 | 5.08 | 3000 | 0.0438 | 5.0754 |
0.0173 | 5.93 | 3500 | 0.0399 | 7.8189 |
0.0122 | 6.78 | 4000 | 0.0402 | 7.4074 |
0.0099 | 7.63 | 4500 | 0.0384 | 5.0754 |
0.0091 | 8.47 | 5000 | 0.0380 | 4.6639 |
0.0077 | 9.32 | 5500 | 0.0400 | 9.6022 |
0.0057 | 10.17 | 6000 | 0.0361 | 8.0933 |
0.0043 | 11.02 | 6500 | 0.0377 | 15.9122 |
0.0028 | 11.86 | 7000 | 0.0338 | 15.6379 |
0.0026 | 12.71 | 7500 | 0.0407 | 16.7353 |
0.0025 | 13.56 | 8000 | 0.0404 | 16.3237 |
0.0022 | 14.41 | 8500 | 0.0387 | 13.3059 |
0.0014 | 15.25 | 9000 | 0.0373 | 19.4787 |
0.0012 | 16.1 | 9500 | 0.0414 | 25.2401 |
0.0006 | 16.95 | 10000 | 0.0475 | 28.3951 |
0.0004 | 17.8 | 10500 | 0.0435 | 30.3155 |
0.0004 | 18.64 | 11000 | 0.0480 | 32.0988 |
0.0002 | 19.49 | 11500 | 0.0487 | 34.9794 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3