|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: torgo_tiny_finetune_F03_frozen_encoder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# torgo_tiny_finetune_F03_frozen_encoder |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0487 |
|
- Wer: 34.9794 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.7886 | 0.85 | 500 | 0.0571 | 14.9520 | |
|
| 0.0987 | 1.69 | 1000 | 0.0536 | 50.3429 | |
|
| 0.0695 | 2.54 | 1500 | 0.0480 | 4.3896 | |
|
| 0.0479 | 3.39 | 2000 | 0.0534 | 7.9561 | |
|
| 0.0314 | 4.24 | 2500 | 0.0542 | 5.0754 | |
|
| 0.0239 | 5.08 | 3000 | 0.0438 | 5.0754 | |
|
| 0.0173 | 5.93 | 3500 | 0.0399 | 7.8189 | |
|
| 0.0122 | 6.78 | 4000 | 0.0402 | 7.4074 | |
|
| 0.0099 | 7.63 | 4500 | 0.0384 | 5.0754 | |
|
| 0.0091 | 8.47 | 5000 | 0.0380 | 4.6639 | |
|
| 0.0077 | 9.32 | 5500 | 0.0400 | 9.6022 | |
|
| 0.0057 | 10.17 | 6000 | 0.0361 | 8.0933 | |
|
| 0.0043 | 11.02 | 6500 | 0.0377 | 15.9122 | |
|
| 0.0028 | 11.86 | 7000 | 0.0338 | 15.6379 | |
|
| 0.0026 | 12.71 | 7500 | 0.0407 | 16.7353 | |
|
| 0.0025 | 13.56 | 8000 | 0.0404 | 16.3237 | |
|
| 0.0022 | 14.41 | 8500 | 0.0387 | 13.3059 | |
|
| 0.0014 | 15.25 | 9000 | 0.0373 | 19.4787 | |
|
| 0.0012 | 16.1 | 9500 | 0.0414 | 25.2401 | |
|
| 0.0006 | 16.95 | 10000 | 0.0475 | 28.3951 | |
|
| 0.0004 | 17.8 | 10500 | 0.0435 | 30.3155 | |
|
| 0.0004 | 18.64 | 11000 | 0.0480 | 32.0988 | |
|
| 0.0002 | 19.49 | 11500 | 0.0487 | 34.9794 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|