Edit model card

torgo_tiny_finetune_M02

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3391
  • Wer: 30.4754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6178 0.85 500 0.3570 29.2869
0.105 1.7 1000 0.3471 35.7385
0.1006 2.55 1500 0.3797 35.1443
0.0661 3.4 2000 0.3132 49.8302
0.0483 4.25 2500 0.3368 62.6486
0.0335 5.1 3000 0.2921 39.7284
0.0271 5.95 3500 0.3178 31.8336
0.0222 6.8 4000 0.3214 56.6214
0.0188 7.65 4500 0.3255 29.3718
0.0135 8.5 5000 0.3525 40.3226
0.0098 9.35 5500 0.3004 31.3243
0.0094 10.2 6000 0.3255 29.5416
0.0063 11.05 6500 0.3111 32.3430
0.0042 11.9 7000 0.3198 42.1053
0.0027 12.76 7500 0.2946 26.9100
0.0028 13.61 8000 0.3201 32.0034
0.0015 14.46 8500 0.3236 31.0696
0.0008 15.31 9000 0.3244 29.9660
0.0004 16.16 9500 0.3332 31.8336
0.0004 17.01 10000 0.3586 30.3905
0.0001 17.86 10500 0.3415 29.6265
0.0 18.71 11000 0.3403 29.7963
0.0001 19.56 11500 0.3391 30.4754

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_M02

Finetuned
(1216)
this model