jindaznb's picture
End of training
629074e verified
|
raw
history blame
2.79 kB
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: torgo_tiny_finetune_M02_frozen_encoder
    results: []

torgo_tiny_finetune_M02_frozen_encoder

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2969
  • Wer: 44.9915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7661 0.85 500 0.2672 64.6859
0.0893 1.7 1000 0.2523 24.2784
0.0664 2.55 1500 0.2562 20.3735
0.0439 3.4 2000 0.2674 98.8115
0.0303 4.25 2500 0.2566 22.1562
0.0224 5.1 3000 0.2737 24.7878
0.0164 5.95 3500 0.2761 41.3413
0.0139 6.8 4000 0.2923 31.3243
0.0102 7.65 4500 0.2841 45.5008
0.0082 8.5 5000 0.2913 36.5874
0.0058 9.35 5500 0.3038 22.2411
0.0065 10.2 6000 0.2853 22.6655
0.0052 11.05 6500 0.2806 22.4958
0.0033 11.9 7000 0.2866 30.8149
0.0026 12.76 7500 0.2852 24.3633
0.0027 13.61 8000 0.2956 54.4992
0.0017 14.46 8500 0.2959 31.0696
0.0012 15.31 9000 0.2974 35.9932
0.0012 16.16 9500 0.2993 39.5586
0.0008 17.01 10000 0.2950 44.1426
0.0004 17.86 10500 0.2988 47.0289
0.0002 18.71 11000 0.2948 44.2275
0.0002 19.56 11500 0.2969 44.9915

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3