|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: torgo_tiny_finetune_M02_frozen_encoder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# torgo_tiny_finetune_M02_frozen_encoder |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2969 |
|
- Wer: 44.9915 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.7661 | 0.85 | 500 | 0.2672 | 64.6859 | |
|
| 0.0893 | 1.7 | 1000 | 0.2523 | 24.2784 | |
|
| 0.0664 | 2.55 | 1500 | 0.2562 | 20.3735 | |
|
| 0.0439 | 3.4 | 2000 | 0.2674 | 98.8115 | |
|
| 0.0303 | 4.25 | 2500 | 0.2566 | 22.1562 | |
|
| 0.0224 | 5.1 | 3000 | 0.2737 | 24.7878 | |
|
| 0.0164 | 5.95 | 3500 | 0.2761 | 41.3413 | |
|
| 0.0139 | 6.8 | 4000 | 0.2923 | 31.3243 | |
|
| 0.0102 | 7.65 | 4500 | 0.2841 | 45.5008 | |
|
| 0.0082 | 8.5 | 5000 | 0.2913 | 36.5874 | |
|
| 0.0058 | 9.35 | 5500 | 0.3038 | 22.2411 | |
|
| 0.0065 | 10.2 | 6000 | 0.2853 | 22.6655 | |
|
| 0.0052 | 11.05 | 6500 | 0.2806 | 22.4958 | |
|
| 0.0033 | 11.9 | 7000 | 0.2866 | 30.8149 | |
|
| 0.0026 | 12.76 | 7500 | 0.2852 | 24.3633 | |
|
| 0.0027 | 13.61 | 8000 | 0.2956 | 54.4992 | |
|
| 0.0017 | 14.46 | 8500 | 0.2959 | 31.0696 | |
|
| 0.0012 | 15.31 | 9000 | 0.2974 | 35.9932 | |
|
| 0.0012 | 16.16 | 9500 | 0.2993 | 39.5586 | |
|
| 0.0008 | 17.01 | 10000 | 0.2950 | 44.1426 | |
|
| 0.0004 | 17.86 | 10500 | 0.2988 | 47.0289 | |
|
| 0.0002 | 18.71 | 11000 | 0.2948 | 44.2275 | |
|
| 0.0002 | 19.56 | 11500 | 0.2969 | 44.9915 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|