jindaznb's picture
End of training
fe9bdd0 verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: torgo_tiny_finetune_M03
    results: []

torgo_tiny_finetune_M03

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3315
  • Wer: 28.3531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6365 0.85 500 0.3228 25.3820
0.1068 1.71 1000 0.3417 52.2920
0.1009 2.56 1500 0.3318 48.2173
0.0686 3.41 2000 0.2947 30.3056
0.0516 4.27 2500 0.3396 26.0611
0.0353 5.12 3000 0.3153 28.4380
0.0255 5.97 3500 0.2689 24.7878
0.0207 6.83 4000 0.4144 35.1443
0.0148 7.68 4500 0.2552 31.8336
0.015 8.53 5000 0.3356 32.5127
0.0114 9.39 5500 0.3311 32.9372
0.0098 10.24 6000 0.3318 24.4482
0.0067 11.09 6500 0.2942 29.5416
0.0031 11.95 7000 0.3945 60.8659
0.0044 12.8 7500 0.3343 28.5229
0.0026 13.65 8000 0.3204 23.3447
0.0019 14.51 8500 0.3103 24.6180
0.001 15.36 9000 0.3257 29.6265
0.0004 16.21 9500 0.3615 28.1834
0.0001 17.06 10000 0.3410 26.7402
0.0002 17.92 10500 0.3327 28.1834
0.0001 18.77 11000 0.3314 28.6078
0.0001 19.62 11500 0.3315 28.3531

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3